// Copyright 2018 Developers of the Rand project. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! The ChaCha random number generator. #[cfg(feature = "std")] use std as core; #[cfg(not(feature = "std"))] use core; use c2_chacha::guts::ChaCha; use self::core::fmt; use rand_core::block::{BlockRng, BlockRngCore}; use rand_core::{CryptoRng, Error, RngCore, SeedableRng}; const STREAM_PARAM_NONCE: u32 = 1; const STREAM_PARAM_BLOCK: u32 = 0; pub struct Array64([T; 64]); impl Default for Array64 where T: Default { fn default() -> Self { Self([T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default()]) } } impl AsRef<[T]> for Array64 { fn as_ref(&self) -> &[T] { &self.0 } } impl AsMut<[T]> for Array64 { fn as_mut(&mut self) -> &mut [T] { &mut self.0 } } impl Clone for Array64 where T: Copy + Default { fn clone(&self) -> Self { let mut new = Self::default(); new.0.copy_from_slice(&self.0); new } } impl fmt::Debug for Array64 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Array64 {{}}") } } macro_rules! chacha_impl { ($ChaChaXCore:ident, $ChaChaXRng:ident, $rounds:expr, $doc:expr) => { #[doc=$doc] #[derive(Clone)] pub struct $ChaChaXCore { state: ChaCha, } // Custom Debug implementation that does not expose the internal state impl fmt::Debug for $ChaChaXCore { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "ChaChaXCore {{}}") } } impl BlockRngCore for $ChaChaXCore { type Item = u32; type Results = Array64; #[inline] fn generate(&mut self, r: &mut Self::Results) { // Fill slice of words by writing to equivalent slice of bytes, then fixing endianness. self.state.refill4($rounds, unsafe { &mut *(&mut *r as *mut Array64 as *mut [u8; 256]) }); for x in r.as_mut() { *x = x.to_le(); } } } impl SeedableRng for $ChaChaXCore { type Seed = [u8; 32]; #[inline] fn from_seed(seed: Self::Seed) -> Self { $ChaChaXCore { state: ChaCha::new(&seed, &[0u8; 8]) } } } /// A cryptographically secure random number generator that uses the ChaCha algorithm. /// /// ChaCha is a stream cipher designed by Daniel J. Bernstein[^1], that we use as an RNG. It is /// an improved variant of the Salsa20 cipher family, which was selected as one of the "stream /// ciphers suitable for widespread adoption" by eSTREAM[^2]. /// /// ChaCha uses add-rotate-xor (ARX) operations as its basis. These are safe against timing /// attacks, although that is mostly a concern for ciphers and not for RNGs. We provide a SIMD /// implementation to support high throughput on a variety of common hardware platforms. /// /// With the ChaCha algorithm it is possible to choose the number of rounds the core algorithm /// should run. The number of rounds is a tradeoff between performance and security, where 8 /// rounds is the minimum potentially secure configuration, and 20 rounds is widely used as a /// conservative choice. /// /// We use a 64-bit counter and 64-bit stream identifier as in Bernstein's implementation[^1] /// except that we use a stream identifier in place of a nonce. A 64-bit counter over 64-byte /// (16 word) blocks allows 1 ZiB of output before cycling, and the stream identifier allows /// 264 unique streams of output per seed. Both counter and stream are initialized /// to zero but may be set via the `set_word_pos` and `set_stream` methods. /// /// The word layout is: /// /// ```text /// constant constant constant constant /// seed seed seed seed /// seed seed seed seed /// counter counter stream_id stream_id /// ``` /// /// This implementation uses an output buffer of sixteen `u32` words, and uses /// [`BlockRng`] to implement the [`RngCore`] methods. /// /// [^1]: D. J. Bernstein, [*ChaCha, a variant of Salsa20*]( /// https://cr.yp.to/chacha.html) /// /// [^2]: [eSTREAM: the ECRYPT Stream Cipher Project]( /// http://www.ecrypt.eu.org/stream/) #[derive(Clone, Debug)] pub struct $ChaChaXRng { rng: BlockRng<$ChaChaXCore>, } impl SeedableRng for $ChaChaXRng { type Seed = [u8; 32]; #[inline] fn from_seed(seed: Self::Seed) -> Self { let core = $ChaChaXCore::from_seed(seed); Self { rng: BlockRng::new(core), } } } impl RngCore for $ChaChaXRng { #[inline] fn next_u32(&mut self) -> u32 { self.rng.next_u32() } #[inline] fn next_u64(&mut self) -> u64 { self.rng.next_u64() } #[inline] fn fill_bytes(&mut self, bytes: &mut [u8]) { self.rng.fill_bytes(bytes) } #[inline] fn try_fill_bytes(&mut self, bytes: &mut [u8]) -> Result<(), Error> { self.rng.try_fill_bytes(bytes) } } impl $ChaChaXRng { // The buffer is a 4-block window, i.e. it is always at a block-aligned position in the // stream but if the stream has been seeked it may not be self-aligned. /// Get the offset from the start of the stream, in 32-bit words. /// /// Since the generated blocks are 16 words (24) long and the /// counter is 64-bits, the offset is a 68-bit number. Sub-word offsets are /// not supported, hence the result can simply be multiplied by 4 to get a /// byte-offset. #[inline] pub fn get_word_pos(&self) -> u128 { let mut block = u128::from(self.rng.core.state.get_stream_param(STREAM_PARAM_BLOCK)); // counter is incremented *after* filling buffer block -= 4; (block << 4) + self.rng.index() as u128 } /// Set the offset from the start of the stream, in 32-bit words. /// /// As with `get_word_pos`, we use a 68-bit number. Since the generator /// simply cycles at the end of its period (1 ZiB), we ignore the upper /// 60 bits. #[inline] pub fn set_word_pos(&mut self, word_offset: u128) { let block = (word_offset >> 4) as u64; self.rng .core .state .set_stream_param(STREAM_PARAM_BLOCK, block); self.rng.generate_and_set((word_offset & 15) as usize); } /// Set the stream number. /// /// This is initialized to zero; 264 unique streams of output /// are available per seed/key. /// /// Note that in order to reproduce ChaCha output with a specific 64-bit /// nonce, one can convert that nonce to a `u64` in little-endian fashion /// and pass to this function. In theory a 96-bit nonce can be used by /// passing the last 64-bits to this function and using the first 32-bits as /// the most significant half of the 64-bit counter (which may be set /// indirectly via `set_word_pos`), but this is not directly supported. #[inline] pub fn set_stream(&mut self, stream: u64) { self.rng .core .state .set_stream_param(STREAM_PARAM_NONCE, stream); if self.rng.index() != 64 { let wp = self.get_word_pos(); self.set_word_pos(wp); } } } impl CryptoRng for $ChaChaXRng {} impl From<$ChaChaXCore> for $ChaChaXRng { fn from(core: $ChaChaXCore) -> Self { $ChaChaXRng { rng: BlockRng::new(core), } } } } } chacha_impl!(ChaCha20Core, ChaCha20Rng, 10, "ChaCha with 20 rounds"); chacha_impl!(ChaCha12Core, ChaCha12Rng, 6, "ChaCha with 12 rounds"); chacha_impl!(ChaCha8Core, ChaCha8Rng, 4, "ChaCha with 8 rounds"); #[cfg(test)] mod test { use rand_core::{RngCore, SeedableRng}; type ChaChaRng = super::ChaCha20Rng; #[test] fn test_chacha_construction() { let seed = [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, ]; let mut rng1 = ChaChaRng::from_seed(seed); assert_eq!(rng1.next_u32(), 137206642); let mut rng2 = ChaChaRng::from_rng(rng1).unwrap(); assert_eq!(rng2.next_u32(), 1325750369); } #[test] fn test_chacha_true_values_a() { // Test vectors 1 and 2 from // https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04 let seed = [0u8; 32]; let mut rng = ChaChaRng::from_seed(seed); let mut results = [0u32; 16]; for i in results.iter_mut() { *i = rng.next_u32(); } let expected = [ 0xade0b876, 0x903df1a0, 0xe56a5d40, 0x28bd8653, 0xb819d2bd, 0x1aed8da0, 0xccef36a8, 0xc70d778b, 0x7c5941da, 0x8d485751, 0x3fe02477, 0x374ad8b8, 0xf4b8436a, 0x1ca11815, 0x69b687c3, 0x8665eeb2, ]; assert_eq!(results, expected); for i in results.iter_mut() { *i = rng.next_u32(); } let expected = [ 0xbee7079f, 0x7a385155, 0x7c97ba98, 0x0d082d73, 0xa0290fcb, 0x6965e348, 0x3e53c612, 0xed7aee32, 0x7621b729, 0x434ee69c, 0xb03371d5, 0xd539d874, 0x281fed31, 0x45fb0a51, 0x1f0ae1ac, 0x6f4d794b, ]; assert_eq!(results, expected); } #[test] fn test_chacha_true_values_b() { // Test vector 3 from // https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04 let seed = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ]; let mut rng = ChaChaRng::from_seed(seed); // Skip block 0 for _ in 0..16 { rng.next_u32(); } let mut results = [0u32; 16]; for i in results.iter_mut() { *i = rng.next_u32(); } let expected = [ 0x2452eb3a, 0x9249f8ec, 0x8d829d9b, 0xddd4ceb1, 0xe8252083, 0x60818b01, 0xf38422b8, 0x5aaa49c9, 0xbb00ca8e, 0xda3ba7b4, 0xc4b592d1, 0xfdf2732f, 0x4436274e, 0x2561b3c8, 0xebdd4aa6, 0xa0136c00, ]; assert_eq!(results, expected); } #[test] fn test_chacha_true_values_c() { // Test vector 4 from // https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04 let seed = [ 0, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ]; let expected = [ 0xfb4dd572, 0x4bc42ef1, 0xdf922636, 0x327f1394, 0xa78dea8f, 0x5e269039, 0xa1bebbc1, 0xcaf09aae, 0xa25ab213, 0x48a6b46c, 0x1b9d9bcb, 0x092c5be6, 0x546ca624, 0x1bec45d5, 0x87f47473, 0x96f0992e, ]; let expected_end = 3 * 16; let mut results = [0u32; 16]; // Test block 2 by skipping block 0 and 1 let mut rng1 = ChaChaRng::from_seed(seed); for _ in 0..32 { rng1.next_u32(); } for i in results.iter_mut() { *i = rng1.next_u32(); } assert_eq!(results, expected); assert_eq!(rng1.get_word_pos(), expected_end); // Test block 2 by using `set_word_pos` let mut rng2 = ChaChaRng::from_seed(seed); rng2.set_word_pos(2 * 16); for i in results.iter_mut() { *i = rng2.next_u32(); } assert_eq!(results, expected); assert_eq!(rng2.get_word_pos(), expected_end); // Test skipping behaviour with other types let mut buf = [0u8; 32]; rng2.fill_bytes(&mut buf[..]); assert_eq!(rng2.get_word_pos(), expected_end + 8); rng2.fill_bytes(&mut buf[0..25]); assert_eq!(rng2.get_word_pos(), expected_end + 15); rng2.next_u64(); assert_eq!(rng2.get_word_pos(), expected_end + 17); rng2.next_u32(); rng2.next_u64(); assert_eq!(rng2.get_word_pos(), expected_end + 20); rng2.fill_bytes(&mut buf[0..1]); assert_eq!(rng2.get_word_pos(), expected_end + 21); } #[test] fn test_chacha_multiple_blocks() { let seed = [ 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7, 0, 0, 0, ]; let mut rng = ChaChaRng::from_seed(seed); // Store the 17*i-th 32-bit word, // i.e., the i-th word of the i-th 16-word block let mut results = [0u32; 16]; for i in results.iter_mut() { *i = rng.next_u32(); for _ in 0..16 { rng.next_u32(); } } let expected = [ 0xf225c81a, 0x6ab1be57, 0x04d42951, 0x70858036, 0x49884684, 0x64efec72, 0x4be2d186, 0x3615b384, 0x11cfa18e, 0xd3c50049, 0x75c775f6, 0x434c6530, 0x2c5bad8f, 0x898881dc, 0x5f1c86d9, 0xc1f8e7f4, ]; assert_eq!(results, expected); } #[test] fn test_chacha_true_bytes() { let seed = [0u8; 32]; let mut rng = ChaChaRng::from_seed(seed); let mut results = [0u8; 32]; rng.fill_bytes(&mut results); let expected = [ 118, 184, 224, 173, 160, 241, 61, 144, 64, 93, 106, 229, 83, 134, 189, 40, 189, 210, 25, 184, 160, 141, 237, 26, 168, 54, 239, 204, 139, 119, 13, 199, ]; assert_eq!(results, expected); } #[test] fn test_chacha_nonce() { // Test vector 5 from // https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04 // Although we do not support setting a nonce, we try it here anyway so // we can use this test vector. let seed = [0u8; 32]; let mut rng = ChaChaRng::from_seed(seed); // 96-bit nonce in LE order is: 0,0,0,0, 0,0,0,0, 0,0,0,2 rng.set_stream(2u64 << (24 + 32)); let mut results = [0u32; 16]; for i in results.iter_mut() { *i = rng.next_u32(); } let expected = [ 0x374dc6c2, 0x3736d58c, 0xb904e24a, 0xcd3f93ef, 0x88228b1a, 0x96a4dfb3, 0x5b76ab72, 0xc727ee54, 0x0e0e978a, 0xf3145c95, 0x1b748ea8, 0xf786c297, 0x99c28f5f, 0x628314e8, 0x398a19fa, 0x6ded1b53, ]; assert_eq!(results, expected); } #[test] fn test_chacha_clone_streams() { let seed = [ 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7, 0, 0, 0, ]; let mut rng = ChaChaRng::from_seed(seed); let mut clone = rng.clone(); for _ in 0..16 { assert_eq!(rng.next_u64(), clone.next_u64()); } rng.set_stream(51); for _ in 0..7 { assert!(rng.next_u32() != clone.next_u32()); } clone.set_stream(51); // switch part way through block for _ in 7..16 { assert_eq!(rng.next_u32(), clone.next_u32()); } } }