// commands.rs // ************************************************************************* // * Copyright (C) 2018-2019 Daniel Mueller (deso@posteo.net) * // * * // * This program is free software: you can redistribute it and/or modify * // * it under the terms of the GNU General Public License as published by * // * the Free Software Foundation, either version 3 of the License, or * // * (at your option) any later version. * // * * // * This program is distributed in the hope that it will be useful, * // * but WITHOUT ANY WARRANTY; without even the implied warranty of * // * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * // * GNU General Public License for more details. * // * * // * You should have received a copy of the GNU General Public License * // * along with this program. If not, see . * // ************************************************************************* use std::fmt; use std::result; use std::thread; use std::time; use std::u8; use libc::sync; use nitrokey::ConfigureOtp; use nitrokey::Device; use nitrokey::GenerateOtp; use crate::args; use crate::error::Error; use crate::pinentry; use crate::Result; const NITROKEY_DEFAULT_ADMIN_PIN: &str = "12345678"; /// Create an `error::Error` with an error message of the format `msg: err`. fn get_error(msg: &'static str, err: nitrokey::CommandError) -> Error { Error::CommandError(Some(msg), err) } /// Set `libnitrokey`'s log level based on the execution context's verbosity. fn set_log_level(ctx: &mut args::ExecCtx<'_>) { let log_lvl = match ctx.verbosity { // The error log level is what libnitrokey uses by default. As such, // there is no harm in us setting that as well when the user did not // ask for higher verbosity. 0 => nitrokey::LogLevel::Error, 1 => nitrokey::LogLevel::Warning, 2 => nitrokey::LogLevel::Info, 3 => nitrokey::LogLevel::DebugL1, 4 => nitrokey::LogLevel::Debug, _ => nitrokey::LogLevel::DebugL2, }; nitrokey::set_log_level(log_lvl); } /// Connect to any Nitrokey device and return it. fn get_device(ctx: &mut args::ExecCtx<'_>) -> Result { set_log_level(ctx); match ctx.model { Some(model) => nitrokey::connect_model(model.into()), None => nitrokey::connect(), } .map_err(|_| Error::from("Nitrokey device not found")) } /// Connect to a Nitrokey Storage device and return it. fn get_storage_device(ctx: &mut args::ExecCtx<'_>) -> Result { set_log_level(ctx); if let Some(model) = ctx.model { if model != args::DeviceModel::Storage { return Err(Error::from( "This command is only available on the Nitrokey Storage", )); } } nitrokey::Storage::connect().or_else(|_| Err(Error::from("Nitrokey Storage device not found"))) } /// Open the password safe on the given device. fn get_password_safe<'dev, D>( ctx: &mut args::ExecCtx<'_>, device: &'dev D, ) -> Result> where D: Device, { let pin_entry = pinentry::PinEntry::from(pinentry::PinType::User, device)?; try_with_pin_and_data( ctx, &pin_entry, "Could not access the password safe", (), |_, pin| device.get_password_safe(pin).map_err(|err| ((), err)), ) } /// Authenticate the given device using the given PIN type and operation. /// /// If an error occurs, the error message `msg` is used. fn authenticate( ctx: &mut args::ExecCtx<'_>, device: D, pin_type: pinentry::PinType, msg: &'static str, op: F, ) -> Result where D: Device, F: Fn(D, &str) -> result::Result, { let pin_entry = pinentry::PinEntry::from(pin_type, &device)?; try_with_pin_and_data(ctx, &pin_entry, msg, device, op) } /// Authenticate the given device with the user PIN. fn authenticate_user(ctx: &mut args::ExecCtx<'_>, device: T) -> Result> where T: Device, { authenticate( ctx, device, pinentry::PinType::User, "Could not authenticate as user", |device, pin| device.authenticate_user(pin), ) } /// Authenticate the given device with the admin PIN. fn authenticate_admin(ctx: &mut args::ExecCtx<'_>, device: T) -> Result> where T: Device, { authenticate( ctx, device, pinentry::PinType::Admin, "Could not authenticate as admin", |device, pin| device.authenticate_admin(pin), ) } /// Return a string representation of the given volume status. fn get_volume_status(status: &nitrokey::VolumeStatus) -> &'static str { if status.active { if status.read_only { "read-only" } else { "active" } } else { "inactive" } } /// Try to execute the given function with a pin queried using pinentry. /// /// This function will query the pin of the given type from the user /// using pinentry. It will then execute the given function. If this /// function returns a result, the result will be passed on. If it /// returns a `CommandError::WrongPassword`, the user will be asked /// again to enter the pin. Otherwise, this function returns an error /// containing the given error message. The user will have at most /// three tries to get the pin right. /// /// The data argument can be used to pass on data between the tries. At /// the first try, this function will call `op` with `data`. At the /// second or third try, it will call `op` with the data returned by the /// previous call to `op`. fn try_with_pin_and_data_with_pinentry( ctx: &mut args::ExecCtx<'_>, pin_entry: &pinentry::PinEntry, msg: &'static str, data: D, op: F, ) -> Result where F: Fn(D, &str) -> result::Result, { let mut data = data; let mut retry = 3; let mut error_msg = None; loop { let pin = pinentry::inquire(ctx, pin_entry, pinentry::Mode::Query, error_msg)?; match op(data, &pin) { Ok(result) => return Ok(result), Err((new_data, err)) => match err { nitrokey::CommandError::WrongPassword => { pinentry::clear(pin_entry)?; retry -= 1; if retry > 0 { error_msg = Some("Wrong password, please reenter"); data = new_data; continue; } return Err(get_error(msg, err)); } err => return Err(get_error(msg, err)), }, }; } } /// Try to execute the given function with a PIN. fn try_with_pin_and_data( ctx: &mut args::ExecCtx<'_>, pin_entry: &pinentry::PinEntry, msg: &'static str, data: D, op: F, ) -> Result where F: Fn(D, &str) -> result::Result, { let pin = match pin_entry.pin_type() { pinentry::PinType::Admin => &ctx.admin_pin, pinentry::PinType::User => &ctx.user_pin, }; if let Some(pin) = pin { let pin = pin.to_str().ok_or_else(|| { Error::Error(format!( "{}: Failed to read PIN due to invalid Unicode data", msg )) })?; op(data, &pin).map_err(|(_, err)| get_error(msg, err)) } else { try_with_pin_and_data_with_pinentry(ctx, pin_entry, msg, data, op) } } /// Try to execute the given function with a pin queried using pinentry. /// /// This function behaves exactly as `try_with_pin_and_data`, but /// it refrains from passing any data to it. fn try_with_pin( ctx: &mut args::ExecCtx<'_>, pin_entry: &pinentry::PinEntry, msg: &'static str, op: F, ) -> Result<()> where F: Fn(&str) -> result::Result<(), nitrokey::CommandError>, { try_with_pin_and_data(ctx, pin_entry, msg, (), |data, pin| { op(pin).map_err(|err| (data, err)) }) } /// Query and pretty print the status that is common to all Nitrokey devices. fn print_status( ctx: &mut args::ExecCtx<'_>, model: &'static str, device: &nitrokey::DeviceWrapper, ) -> Result<()> { let serial_number = device .get_serial_number() .map_err(|err| get_error("Could not query the serial number", err))?; println!( ctx, r#"Status: model: {model} serial number: 0x{id} firmware version: {fwv0}.{fwv1} user retry count: {urc} admin retry count: {arc}"#, model = model, id = serial_number, fwv0 = device.get_major_firmware_version(), fwv1 = device.get_minor_firmware_version(), urc = device.get_user_retry_count(), arc = device.get_admin_retry_count(), )?; Ok(()) } /// Inquire the status of the nitrokey. pub fn status(ctx: &mut args::ExecCtx<'_>) -> Result<()> { let device = get_device(ctx)?; let model = match device { nitrokey::DeviceWrapper::Pro(_) => "Pro", nitrokey::DeviceWrapper::Storage(_) => "Storage", }; print_status(ctx, model, &device) } /// Perform a factory reset. pub fn reset(ctx: &mut args::ExecCtx<'_>) -> Result<()> { let device = get_device(ctx)?; let pin_entry = pinentry::PinEntry::from(pinentry::PinType::Admin, &device)?; // To force the user to enter the admin PIN before performing a // factory reset, we clear the pinentry cache for the admin PIN. pinentry::clear(&pin_entry)?; try_with_pin(ctx, &pin_entry, "Factory reset failed", |pin| { device.factory_reset(&pin)?; // Work around for a timing issue between factory_reset and // build_aes_key, see // https://github.com/Nitrokey/nitrokey-storage-firmware/issues/80 thread::sleep(time::Duration::from_secs(3)); // Another work around for spurious WrongPassword returns of // build_aes_key after a factory reset on Pro devices. // https://github.com/Nitrokey/nitrokey-pro-firmware/issues/57 let _ = device.get_user_retry_count(); device.build_aes_key(NITROKEY_DEFAULT_ADMIN_PIN) }) } /// Open the encrypted volume on the nitrokey. pub fn storage_open(ctx: &mut args::ExecCtx<'_>) -> Result<()> { let device = get_storage_device(ctx)?; let pin_entry = pinentry::PinEntry::from(pinentry::PinType::User, &device)?; // We may forcefully close a hidden volume, if active, so be sure to // flush caches to disk. unsafe { sync() }; try_with_pin(ctx, &pin_entry, "Opening encrypted volume failed", |pin| { device.enable_encrypted_volume(&pin) }) } /// Close the previously opened encrypted volume. pub fn storage_close(ctx: &mut args::ExecCtx<'_>) -> Result<()> { // Flush all filesystem caches to disk. We are mostly interested in // making sure that the encrypted volume on the nitrokey we are // about to close is not closed while not all data was written to // it. unsafe { sync() }; get_storage_device(ctx)? .disable_encrypted_volume() .map_err(|err| get_error("Closing encrypted volume failed", err)) } /// Create a hidden volume. pub fn storage_hidden_create( ctx: &mut args::ExecCtx<'_>, slot: u8, start: u8, end: u8, ) -> Result<()> { let device = get_storage_device(ctx)?; let pwd_entry = pinentry::PwdEntry::from(&device)?; let pwd = if let Some(pwd) = &ctx.password { pwd .to_str() .ok_or_else(|| Error::from("Failed to read password: invalid Unicode data found")) .map(ToOwned::to_owned) } else { pinentry::choose(ctx, &pwd_entry) }?; device .create_hidden_volume(slot, start, end, &pwd) .map_err(|err| get_error("Creating hidden volume failed", err)) } /// Open a hidden volume. pub fn storage_hidden_open(ctx: &mut args::ExecCtx<'_>) -> Result<()> { let device = get_storage_device(ctx)?; let pwd_entry = pinentry::PwdEntry::from(&device)?; let pwd = if let Some(pwd) = &ctx.password { pwd .to_str() .ok_or_else(|| Error::from("Failed to read password: invalid Unicode data found")) .map(ToOwned::to_owned) } else { pinentry::inquire(ctx, &pwd_entry, pinentry::Mode::Query, None) }?; // We may forcefully close an encrypted volume, if active, so be sure // to flush caches to disk. unsafe { sync() }; device .enable_hidden_volume(&pwd) .map_err(|err| get_error("Opening hidden volume failed", err)) } /// Close a previously opened hidden volume. pub fn storage_hidden_close(ctx: &mut args::ExecCtx<'_>) -> Result<()> { unsafe { sync() }; get_storage_device(ctx)? .disable_hidden_volume() .map_err(|err| get_error("Closing hidden volume failed", err)) } /// Pretty print the status of a Nitrokey Storage. fn print_storage_status( ctx: &mut args::ExecCtx<'_>, status: &nitrokey::StorageStatus, ) -> Result<()> { println!( ctx, r#"Status: SD card ID: {id:#x} firmware: {fw} storage keys: {sk} volumes: unencrypted: {vu} encrypted: {ve} hidden: {vh}"#, id = status.serial_number_sd_card, fw = if status.firmware_locked { "locked" } else { "unlocked" }, sk = if status.stick_initialized { "created" } else { "not created" }, vu = get_volume_status(&status.unencrypted_volume), ve = get_volume_status(&status.encrypted_volume), vh = get_volume_status(&status.hidden_volume), )?; Ok(()) } /// Connect to and pretty print the status of a Nitrokey Storage. pub fn storage_status(ctx: &mut args::ExecCtx<'_>) -> Result<()> { let device = get_storage_device(ctx)?; let status = device .get_status() .map_err(|err| get_error("Getting Storage status failed", err))?; print_storage_status(ctx, &status) } /// Return a String representation of the given Option. fn format_option(option: Option) -> String { match option { Some(value) => format!("{}", value), None => "not set".to_string(), } } /// Read the Nitrokey configuration. pub fn config_get(ctx: &mut args::ExecCtx<'_>) -> Result<()> { let config = get_device(ctx)? .get_config() .map_err(|err| get_error("Could not get configuration", err))?; println!( ctx, r#"Config: numlock binding: {nl} capslock binding: {cl} scrollock binding: {sl} require user PIN for OTP: {otp}"#, nl = format_option(config.numlock), cl = format_option(config.capslock), sl = format_option(config.scrollock), otp = config.user_password, )?; Ok(()) } /// Write the Nitrokey configuration. pub fn config_set( ctx: &mut args::ExecCtx<'_>, numlock: args::ConfigOption, capslock: args::ConfigOption, scrollock: args::ConfigOption, user_password: Option, ) -> Result<()> { let device = get_device(ctx)?; let device = authenticate_admin(ctx, device)?; let config = device .get_config() .map_err(|err| get_error("Could not get configuration", err))?; let config = nitrokey::Config { numlock: numlock.or(config.numlock), capslock: capslock.or(config.capslock), scrollock: scrollock.or(config.scrollock), user_password: user_password.unwrap_or(config.user_password), }; device .write_config(config) .map_err(|err| get_error("Could not set configuration", err)) } /// Lock the Nitrokey device. pub fn lock(ctx: &mut args::ExecCtx<'_>) -> Result<()> { get_device(ctx)? .lock() .map_err(|err| get_error("Getting Storage status failed", err)) } fn get_otp(slot: u8, algorithm: args::OtpAlgorithm, device: &T) -> Result { match algorithm { args::OtpAlgorithm::Hotp => device.get_hotp_code(slot), args::OtpAlgorithm::Totp => device.get_totp_code(slot), } .map_err(|err| get_error("Could not generate OTP", err)) } fn get_unix_timestamp() -> Result { time::SystemTime::now() .duration_since(time::UNIX_EPOCH) .or_else(|_| Err(Error::from("Current system time is before the Unix epoch"))) .map(|duration| duration.as_secs()) } /// Generate a one-time password on the Nitrokey device. pub fn otp_get( ctx: &mut args::ExecCtx<'_>, slot: u8, algorithm: args::OtpAlgorithm, time: Option, ) -> Result<()> { let device = get_device(ctx)?; if algorithm == args::OtpAlgorithm::Totp { device .set_time( match time { Some(time) => time, None => get_unix_timestamp()?, }, true, ) .map_err(|err| get_error("Could not set time", err))?; } let config = device .get_config() .map_err(|err| get_error("Could not get device configuration", err))?; let otp = if config.user_password { let user = authenticate_user(ctx, device)?; get_otp(slot, algorithm, &user) } else { get_otp(slot, algorithm, &device) }?; println!(ctx, "{}", otp)?; Ok(()) } /// Format a byte vector as a hex string. fn format_bytes(bytes: &[u8]) -> String { bytes .iter() .map(|c| format!("{:x}", c)) .collect::>() .join("") } /// Prepare an ASCII secret string for libnitrokey. /// /// libnitrokey expects secrets as hexadecimal strings. This function transforms an ASCII string /// into a hexadecimal string or returns an error if the given string contains non-ASCII /// characters. fn prepare_ascii_secret(secret: &str) -> Result { if secret.is_ascii() { Ok(format_bytes(&secret.as_bytes())) } else { Err(Error::from( "The given secret is not an ASCII string despite --format ascii being set", )) } } /// Prepare a base32 secret string for libnitrokey. fn prepare_base32_secret(secret: &str) -> Result { base32::decode(base32::Alphabet::RFC4648 { padding: false }, secret) .map(|vec| format_bytes(&vec)) .ok_or_else(|| Error::from("Could not parse base32 secret")) } /// Configure a one-time password slot on the Nitrokey device. pub fn otp_set( ctx: &mut args::ExecCtx<'_>, data: nitrokey::OtpSlotData, algorithm: args::OtpAlgorithm, counter: u64, time_window: u16, secret_format: args::OtpSecretFormat, ) -> Result<()> { let secret = match secret_format { args::OtpSecretFormat::Ascii => prepare_ascii_secret(&data.secret)?, args::OtpSecretFormat::Base32 => prepare_base32_secret(&data.secret)?, args::OtpSecretFormat::Hex => data.secret, }; let data = nitrokey::OtpSlotData { secret, ..data }; let device = get_device(ctx)?; let device = authenticate_admin(ctx, device)?; match algorithm { args::OtpAlgorithm::Hotp => device.write_hotp_slot(data, counter), args::OtpAlgorithm::Totp => device.write_totp_slot(data, time_window), } .map_err(|err| get_error("Could not write OTP slot", err))?; Ok(()) } /// Clear an OTP slot. pub fn otp_clear( ctx: &mut args::ExecCtx<'_>, slot: u8, algorithm: args::OtpAlgorithm, ) -> Result<()> { let device = get_device(ctx)?; let device = authenticate_admin(ctx, device)?; match algorithm { args::OtpAlgorithm::Hotp => device.erase_hotp_slot(slot), args::OtpAlgorithm::Totp => device.erase_totp_slot(slot), } .map_err(|err| get_error("Could not clear OTP slot", err))?; Ok(()) } fn print_otp_status( ctx: &mut args::ExecCtx<'_>, algorithm: args::OtpAlgorithm, device: &nitrokey::DeviceWrapper, all: bool, ) -> Result<()> { let mut slot: u8 = 0; loop { let result = match algorithm { args::OtpAlgorithm::Hotp => device.get_hotp_slot_name(slot), args::OtpAlgorithm::Totp => device.get_totp_slot_name(slot), }; slot = match slot.checked_add(1) { Some(slot) => slot, None => { return Err(Error::from("Integer overflow when iterating OTP slots")); } }; let name = match result { Ok(name) => name, Err(nitrokey::CommandError::InvalidSlot) => return Ok(()), Err(nitrokey::CommandError::SlotNotProgrammed) => { if all { "[not programmed]".to_string() } else { continue; } } Err(err) => return Err(get_error("Could not check OTP slot", err)), }; println!(ctx, "{}\t{}\t{}", algorithm, slot - 1, name)?; } } /// Print the status of the OTP slots. pub fn otp_status(ctx: &mut args::ExecCtx<'_>, all: bool) -> Result<()> { let device = get_device(ctx)?; println!(ctx, "alg\tslot\tname")?; print_otp_status(ctx, args::OtpAlgorithm::Hotp, &device, all)?; print_otp_status(ctx, args::OtpAlgorithm::Totp, &device, all)?; Ok(()) } /// Clear the PIN stored by various operations. pub fn pin_clear(ctx: &mut args::ExecCtx<'_>) -> Result<()> { let device = get_device(ctx)?; pinentry::clear(&pinentry::PinEntry::from( pinentry::PinType::Admin, &device, )?)?; pinentry::clear(&pinentry::PinEntry::from(pinentry::PinType::User, &device)?)?; Ok(()) } /// Choose a PIN of the given type. /// /// If the user has set the respective environment variable for the /// given PIN type, it will be used. fn choose_pin( ctx: &mut args::ExecCtx<'_>, pin_entry: &pinentry::PinEntry, new: bool, ) -> Result { let new_pin = match pin_entry.pin_type() { pinentry::PinType::Admin => { if new { &ctx.new_admin_pin } else { &ctx.admin_pin } } pinentry::PinType::User => { if new { &ctx.new_user_pin } else { &ctx.user_pin } } }; if let Some(new_pin) = new_pin { new_pin .to_str() .ok_or_else(|| Error::from("Failed to read PIN: invalid Unicode data found")) .map(ToOwned::to_owned) } else { pinentry::choose(ctx, pin_entry) } } /// Change a PIN. pub fn pin_set(ctx: &mut args::ExecCtx<'_>, pin_type: pinentry::PinType) -> Result<()> { let device = get_device(ctx)?; let pin_entry = pinentry::PinEntry::from(pin_type, &device)?; let new_pin = choose_pin(ctx, &pin_entry, true)?; try_with_pin( ctx, &pin_entry, "Could not change the PIN", |current_pin| match pin_type { pinentry::PinType::Admin => device.change_admin_pin(¤t_pin, &new_pin), pinentry::PinType::User => device.change_user_pin(¤t_pin, &new_pin), }, ) } /// Unblock and reset the user PIN. pub fn pin_unblock(ctx: &mut args::ExecCtx<'_>) -> Result<()> { let device = get_device(ctx)?; let pin_entry = pinentry::PinEntry::from(pinentry::PinType::User, &device)?; let user_pin = choose_pin(ctx, &pin_entry, false)?; let pin_entry = pinentry::PinEntry::from(pinentry::PinType::Admin, &device)?; try_with_pin( ctx, &pin_entry, "Could not unblock the user PIN", |admin_pin| device.unlock_user_pin(&admin_pin, &user_pin), ) } fn print_pws_data( ctx: &mut args::ExecCtx<'_>, description: &'static str, result: result::Result, quiet: bool, ) -> Result<()> { let value = result.map_err(|err| get_error("Could not access PWS slot", err))?; if quiet { println!(ctx, "{}", value)?; } else { println!(ctx, "{} {}", description, value)?; } Ok(()) } fn check_slot(pws: &nitrokey::PasswordSafe<'_>, slot: u8) -> Result<()> { if slot >= nitrokey::SLOT_COUNT { return Err(nitrokey::CommandError::InvalidSlot.into()); } let status = pws .get_slot_status() .map_err(|err| get_error("Could not read PWS slot status", err))?; if status[slot as usize] { Ok(()) } else { Err(get_error( "Could not access PWS slot", nitrokey::CommandError::SlotNotProgrammed, )) } } /// Read a PWS slot. pub fn pws_get( ctx: &mut args::ExecCtx<'_>, slot: u8, show_name: bool, show_login: bool, show_password: bool, quiet: bool, ) -> Result<()> { let device = get_device(ctx)?; let pws = get_password_safe(ctx, &device)?; check_slot(&pws, slot)?; let show_all = !show_name && !show_login && !show_password; if show_all || show_name { print_pws_data(ctx, "name: ", pws.get_slot_name(slot), quiet)?; } if show_all || show_login { print_pws_data(ctx, "login: ", pws.get_slot_login(slot), quiet)?; } if show_all || show_password { print_pws_data(ctx, "password:", pws.get_slot_password(slot), quiet)?; } Ok(()) } /// Write a PWS slot. pub fn pws_set( ctx: &mut args::ExecCtx<'_>, slot: u8, name: &str, login: &str, password: &str, ) -> Result<()> { let device = get_device(ctx)?; let pws = get_password_safe(ctx, &device)?; pws .write_slot(slot, name, login, password) .map_err(|err| get_error("Could not write PWS slot", err)) } /// Clear a PWS slot. pub fn pws_clear(ctx: &mut args::ExecCtx<'_>, slot: u8) -> Result<()> { let device = get_device(ctx)?; let pws = get_password_safe(ctx, &device)?; pws .erase_slot(slot) .map_err(|err| get_error("Could not clear PWS slot", err)) } fn print_pws_slot( ctx: &mut args::ExecCtx<'_>, pws: &nitrokey::PasswordSafe<'_>, slot: usize, programmed: bool, ) -> Result<()> { if slot > u8::MAX as usize { return Err(Error::from("Invalid PWS slot number")); } let slot = slot as u8; let name = if programmed { pws .get_slot_name(slot) .map_err(|err| get_error("Could not read PWS slot", err))? } else { "[not programmed]".to_string() }; println!(ctx, "{}\t{}", slot, name)?; Ok(()) } /// Print the status of all PWS slots. pub fn pws_status(ctx: &mut args::ExecCtx<'_>, all: bool) -> Result<()> { let device = get_device(ctx)?; let pws = get_password_safe(ctx, &device)?; let slots = pws .get_slot_status() .map_err(|err| get_error("Could not read PWS slot status", err))?; println!(ctx, "slot\tname")?; for (i, &value) in slots .into_iter() .enumerate() .filter(|(_, &value)| all || value) { print_pws_slot(ctx, &pws, i, value)?; } Ok(()) } #[cfg(test)] mod tests { use super::*; #[test] fn prepare_secret_ascii() { let result = prepare_ascii_secret("12345678901234567890"); assert_eq!( "3132333435363738393031323334353637383930".to_string(), result.unwrap() ); } #[test] fn prepare_secret_non_ascii() { let result = prepare_ascii_secret("Österreich"); assert!(result.is_err()); } }