// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A helper module to probe the Windows Registry when looking for //! windows-specific tools. use std::process::Command; use Tool; macro_rules! otry { ($expr:expr) => (match $expr { Some(val) => val, None => return None, }) } /// Attempts to find a tool within an MSVC installation using the Windows /// registry as a point to search from. /// /// The `target` argument is the target that the tool should work for (e.g. /// compile or link for) and the `tool` argument is the tool to find (e.g. /// `cl.exe` or `link.exe`). /// /// This function will return `None` if the tool could not be found, or it will /// return `Some(cmd)` which represents a command that's ready to execute the /// tool with the appropriate environment variables set. /// /// Note that this function always returns `None` for non-MSVC targets. pub fn find(target: &str, tool: &str) -> Option { find_tool(target, tool).map(|c| c.to_command()) } /// Similar to the `find` function above, this function will attempt the same /// operation (finding a MSVC tool in a local install) but instead returns a /// `Tool` which may be introspected. #[cfg(not(windows))] pub fn find_tool(_target: &str, _tool: &str) -> Option { None } /// Documented above. #[cfg(windows)] pub fn find_tool(target: &str, tool: &str) -> Option { use std::env; use std::ffi::OsString; use std::mem; use std::path::{Path, PathBuf}; use registry::{RegistryKey, LOCAL_MACHINE}; struct MsvcTool { tool: PathBuf, libs: Vec, path: Vec, include: Vec, } impl MsvcTool { fn new(tool: PathBuf) -> MsvcTool { MsvcTool { tool: tool, libs: Vec::new(), path: Vec::new(), include: Vec::new(), } } fn into_tool(self) -> Tool { let MsvcTool { tool, libs, path, include } = self; let mut tool = Tool::new(tool.into()); add_env(&mut tool, "LIB", libs); add_env(&mut tool, "PATH", path); add_env(&mut tool, "INCLUDE", include); tool } } // This logic is all tailored for MSVC, if we're not that then bail out // early. if !target.contains("msvc") { return None; } // Looks like msbuild isn't located in the same location as other tools like // cl.exe and lib.exe. To handle this we probe for it manually with // dedicated registry keys. if tool.contains("msbuild") { return find_msbuild(target); } // If VCINSTALLDIR is set, then someone's probably already run vcvars and we // should just find whatever that indicates. if env::var_os("VCINSTALLDIR").is_some() { return env::var_os("PATH") .and_then(|path| env::split_paths(&path).map(|p| p.join(tool)).find(|p| p.exists())) .map(|path| Tool::new(path.into())); } // Ok, if we're here, now comes the fun part of the probing. Default shells // or shells like MSYS aren't really configured to execute `cl.exe` and the // various compiler tools shipped as part of Visual Studio. Here we try to // first find the relevant tool, then we also have to be sure to fill in // environment variables like `LIB`, `INCLUDE`, and `PATH` to ensure that // the tool is actually usable. return find_msvc_latest(tool, target, "15.0") .or_else(|| find_msvc_latest(tool, target, "14.0")) .or_else(|| find_msvc_12(tool, target)) .or_else(|| find_msvc_11(tool, target)); // For MSVC 14 or newer we need to find the Universal CRT as well as either // the Windows 10 SDK or Windows 8.1 SDK. fn find_msvc_latest(tool: &str, target: &str, ver: &str) -> Option { let vcdir = otry!(get_vc_dir(ver)); let mut tool = otry!(get_tool(tool, &vcdir, target)); let sub = otry!(lib_subdir(target)); let (ucrt, ucrt_version) = otry!(get_ucrt_dir()); let ucrt_include = ucrt.join("include").join(&ucrt_version); tool.include.push(ucrt_include.join("ucrt")); let ucrt_lib = ucrt.join("lib").join(&ucrt_version); tool.libs.push(ucrt_lib.join("ucrt").join(sub)); if let Some((sdk, version)) = get_sdk10_dir() { tool.path.push(sdk.join("bin").join(sub)); let sdk_lib = sdk.join("lib").join(&version); tool.libs.push(sdk_lib.join("um").join(sub)); let sdk_include = sdk.join("include").join(&version); tool.include.push(sdk_include.join("um")); tool.include.push(sdk_include.join("winrt")); tool.include.push(sdk_include.join("shared")); } else if let Some(sdk) = get_sdk81_dir() { tool.path.push(sdk.join("bin").join(sub)); let sdk_lib = sdk.join("lib").join("winv6.3"); tool.libs.push(sdk_lib.join("um").join(sub)); let sdk_include = sdk.join("include"); tool.include.push(sdk_include.join("um")); tool.include.push(sdk_include.join("winrt")); tool.include.push(sdk_include.join("shared")); } else { return None; } Some(tool.into_tool()) } // For MSVC 12 we need to find the Windows 8.1 SDK. fn find_msvc_12(tool: &str, target: &str) -> Option { let vcdir = otry!(get_vc_dir("12.0")); let mut tool = otry!(get_tool(tool, &vcdir, target)); let sub = otry!(lib_subdir(target)); let sdk81 = otry!(get_sdk81_dir()); tool.path.push(sdk81.join("bin").join(sub)); let sdk_lib = sdk81.join("lib").join("winv6.3"); tool.libs.push(sdk_lib.join("um").join(sub)); let sdk_include = sdk81.join("include"); tool.include.push(sdk_include.join("shared")); tool.include.push(sdk_include.join("um")); tool.include.push(sdk_include.join("winrt")); Some(tool.into_tool()) } // For MSVC 11 we need to find the Windows 8 SDK. fn find_msvc_11(tool: &str, target: &str) -> Option { let vcdir = otry!(get_vc_dir("11.0")); let mut tool = otry!(get_tool(tool, &vcdir, target)); let sub = otry!(lib_subdir(target)); let sdk8 = otry!(get_sdk8_dir()); tool.path.push(sdk8.join("bin").join(sub)); let sdk_lib = sdk8.join("lib").join("win8"); tool.libs.push(sdk_lib.join("um").join(sub)); let sdk_include = sdk8.join("include"); tool.include.push(sdk_include.join("shared")); tool.include.push(sdk_include.join("um")); tool.include.push(sdk_include.join("winrt")); Some(tool.into_tool()) } fn add_env(tool: &mut Tool, env: &str, paths: Vec) { let prev = env::var_os(env).unwrap_or(OsString::new()); let prev = env::split_paths(&prev); let new = paths.into_iter().chain(prev); tool.env.push((env.to_string().into(), env::join_paths(new).unwrap())); } // Given a possible MSVC installation directory, we look for the linker and // then add the MSVC library path. fn get_tool(tool: &str, path: &Path, target: &str) -> Option { bin_subdir(target) .into_iter() .map(|(sub, host)| (path.join("bin").join(sub).join(tool), path.join("bin").join(host))) .filter(|&(ref path, _)| path.is_file()) .map(|(path, host)| { let mut tool = MsvcTool::new(path); tool.path.push(host); tool }) .filter_map(|mut tool| { let sub = otry!(vc_lib_subdir(target)); tool.libs.push(path.join("lib").join(sub)); tool.include.push(path.join("include")); let atlmfc_path = path.join("atlmfc"); if atlmfc_path.exists() { tool.libs.push(atlmfc_path.join("lib").join(sub)); tool.include.push(atlmfc_path.join("include")); } Some(tool) }) .next() } // To find MSVC we look in a specific registry key for the version we are // trying to find. fn get_vc_dir(ver: &str) -> Option { let key = r"SOFTWARE\Microsoft\VisualStudio\SxS\VC7"; let key = otry!(LOCAL_MACHINE.open(key.as_ref()).ok()); let path = otry!(key.query_str(ver).ok()); Some(path.into()) } // To find the Universal CRT we look in a specific registry key for where // all the Universal CRTs are located and then sort them asciibetically to // find the newest version. While this sort of sorting isn't ideal, it is // what vcvars does so that's good enough for us. // // Returns a pair of (root, version) for the ucrt dir if found fn get_ucrt_dir() -> Option<(PathBuf, String)> { let key = r"SOFTWARE\Microsoft\Windows Kits\Installed Roots"; let key = otry!(LOCAL_MACHINE.open(key.as_ref()).ok()); let root = otry!(key.query_str("KitsRoot10").ok()); let readdir = otry!(Path::new(&root).join("lib").read_dir().ok()); let max_libdir = otry!(readdir.filter_map(|dir| dir.ok()) .map(|dir| dir.path()) .filter(|dir| { dir.components() .last() .and_then(|c| c.as_os_str().to_str()) .map(|c| c.starts_with("10.") && dir.join("ucrt").is_dir()) .unwrap_or(false) }) .max()); let version = max_libdir.components().last().unwrap(); let version = version.as_os_str().to_str().unwrap().to_string(); Some((root.into(), version)) } // Vcvars finds the correct version of the Windows 10 SDK by looking // for the include `um\Windows.h` because sometimes a given version will // only have UCRT bits without the rest of the SDK. Since we only care about // libraries and not includes, we instead look for `um\x64\kernel32.lib`. // Since the 32-bit and 64-bit libraries are always installed together we // only need to bother checking x64, making this code a tiny bit simpler. // Like we do for the Universal CRT, we sort the possibilities // asciibetically to find the newest one as that is what vcvars does. fn get_sdk10_dir() -> Option<(PathBuf, String)> { let key = r"SOFTWARE\Microsoft\Microsoft SDKs\Windows\v10.0"; let key = otry!(LOCAL_MACHINE.open(key.as_ref()).ok()); let root = otry!(key.query_str("InstallationFolder").ok()); let readdir = otry!(Path::new(&root).join("lib").read_dir().ok()); let mut dirs = readdir.filter_map(|dir| dir.ok()) .map(|dir| dir.path()) .collect::>(); dirs.sort(); let dir = otry!(dirs.into_iter() .rev() .filter(|dir| dir.join("um").join("x64").join("kernel32.lib").is_file()) .next()); let version = dir.components().last().unwrap(); let version = version.as_os_str().to_str().unwrap().to_string(); Some((root.into(), version)) } // Interestingly there are several subdirectories, `win7` `win8` and // `winv6.3`. Vcvars seems to only care about `winv6.3` though, so the same // applies to us. Note that if we were targetting kernel mode drivers // instead of user mode applications, we would care. fn get_sdk81_dir() -> Option { let key = r"SOFTWARE\Microsoft\Microsoft SDKs\Windows\v8.1"; let key = otry!(LOCAL_MACHINE.open(key.as_ref()).ok()); let root = otry!(key.query_str("InstallationFolder").ok()); Some(root.into()) } fn get_sdk8_dir() -> Option { let key = r"SOFTWARE\Microsoft\Microsoft SDKs\Windows\v8.0"; let key = otry!(LOCAL_MACHINE.open(key.as_ref()).ok()); let root = otry!(key.query_str("InstallationFolder").ok()); Some(root.into()) } const PROCESSOR_ARCHITECTURE_INTEL: u16 = 0; const PROCESSOR_ARCHITECTURE_AMD64: u16 = 9; const X86: u16 = PROCESSOR_ARCHITECTURE_INTEL; const X86_64: u16 = PROCESSOR_ARCHITECTURE_AMD64; // When choosing the tool to use, we have to choose the one which matches // the target architecture. Otherwise we end up in situations where someone // on 32-bit Windows is trying to cross compile to 64-bit and it tries to // invoke the native 64-bit compiler which won't work. // // For the return value of this function, the first member of the tuple is // the folder of the tool we will be invoking, while the second member is // the folder of the host toolchain for that tool which is essential when // using a cross linker. We return a Vec since on x64 there are often two // linkers that can target the architecture we desire. The 64-bit host // linker is preferred, and hence first, due to 64-bit allowing it more // address space to work with and potentially being faster. fn bin_subdir(target: &str) -> Vec<(&'static str, &'static str)> { let arch = target.split('-').next().unwrap(); match (arch, host_arch()) { ("i586", X86) | ("i686", X86) => vec![("", "")], ("i586", X86_64) | ("i686", X86_64) => vec![("amd64_x86", "amd64"), ("", "")], ("x86_64", X86) => vec![("x86_amd64", "")], ("x86_64", X86_64) => vec![("amd64", "amd64"), ("x86_amd64", "")], ("arm", X86) => vec![("x86_arm", "")], ("arm", X86_64) => vec![("amd64_arm", "amd64"), ("x86_arm", "")], _ => vec![], } } fn lib_subdir(target: &str) -> Option<&'static str> { let arch = target.split('-').next().unwrap(); match arch { "i586" | "i686" => Some("x86"), "x86_64" => Some("x64"), "arm" => Some("arm"), _ => None, } } // MSVC's x86 libraries are not in a subfolder fn vc_lib_subdir(target: &str) -> Option<&'static str> { let arch = target.split('-').next().unwrap(); match arch { "i586" | "i686" => Some(""), "x86_64" => Some("amd64"), "arm" => Some("arm"), _ => None, } } #[allow(bad_style)] fn host_arch() -> u16 { type DWORD = u32; type WORD = u16; type LPVOID = *mut u8; type DWORD_PTR = usize; #[repr(C)] struct SYSTEM_INFO { wProcessorArchitecture: WORD, _wReserved: WORD, _dwPageSize: DWORD, _lpMinimumApplicationAddress: LPVOID, _lpMaximumApplicationAddress: LPVOID, _dwActiveProcessorMask: DWORD_PTR, _dwNumberOfProcessors: DWORD, _dwProcessorType: DWORD, _dwAllocationGranularity: DWORD, _wProcessorLevel: WORD, _wProcessorRevision: WORD, } extern "system" { fn GetNativeSystemInfo(lpSystemInfo: *mut SYSTEM_INFO); } unsafe { let mut info = mem::zeroed(); GetNativeSystemInfo(&mut info); info.wProcessorArchitecture } } // Given a registry key, look at all the sub keys and find the one which has // the maximal numeric value. // // Returns the name of the maximal key as well as the opened maximal key. fn max_version(key: &RegistryKey) -> Option<(OsString, RegistryKey)> { let mut max_vers = 0; let mut max_key = None; for subkey in key.iter().filter_map(|k| k.ok()) { let val = subkey.to_str() .and_then(|s| s.trim_left_matches("v").replace(".", "").parse().ok()); let val = match val { Some(s) => s, None => continue, }; if val > max_vers { if let Ok(k) = key.open(&subkey) { max_vers = val; max_key = Some((subkey, k)); } } } max_key } // see http://stackoverflow.com/questions/328017/path-to-msbuild fn find_msbuild(target: &str) -> Option { let key = r"SOFTWARE\Microsoft\MSBuild\ToolsVersions"; LOCAL_MACHINE.open(key.as_ref()) .ok() .and_then(|key| { max_version(&key).and_then(|(_vers, key)| key.query_str("MSBuildToolsPath").ok()) }) .map(|path| { let mut path = PathBuf::from(path); path.push("MSBuild.exe"); let mut tool = Tool::new(path); if target.contains("x86_64") { tool.env.push(("Platform".into(), "X64".into())); } tool }) } }