//! A library for build scripts to compile custom C code //! //! This library is intended to be used as a `build-dependencies` entry in //! `Cargo.toml`: //! //! ```toml //! [build-dependencies] //! cc = "1.0" //! ``` //! //! The purpose of this crate is to provide the utility functions necessary to //! compile C code into a static archive which is then linked into a Rust crate. //! Configuration is available through the `Build` struct. //! //! This crate will automatically detect situations such as cross compilation or //! other environment variables set by Cargo and will build code appropriately. //! //! The crate is not limited to C code, it can accept any source code that can //! be passed to a C or C++ compiler. As such, assembly files with extensions //! `.s` (gcc/clang) and `.asm` (MSVC) can also be compiled. //! //! [`Build`]: struct.Build.html //! //! # Parallelism //! //! To parallelize computation, enable the `parallel` feature for the crate. //! //! ```toml //! [build-dependencies] //! cc = { version = "1.0", features = ["parallel"] } //! ``` //! To specify the max number of concurrent compilation jobs, set the `NUM_JOBS` //! environment variable to the desired amount. //! //! Cargo will also set this environment variable when executed with the `-jN` flag. //! //! If `NUM_JOBS` is not set, the `RAYON_NUM_THREADS` environment variable can //! also specify the build paralellism. //! //! # Examples //! //! Use the `Build` struct to compile `src/foo.c`: //! //! ```no_run //! extern crate cc; //! //! fn main() { //! cc::Build::new() //! .file("src/foo.c") //! .define("FOO", Some("bar")) //! .include("src") //! .compile("foo"); //! } //! ``` #![doc(html_root_url = "https://docs.rs/cc/1.0")] #![cfg_attr(test, deny(warnings))] #![allow(deprecated)] #![deny(missing_docs)] #[cfg(feature = "parallel")] extern crate rayon; use std::env; use std::ffi::{OsStr, OsString}; use std::fs; use std::path::{Path, PathBuf}; use std::process::{Child, Command, Stdio}; use std::io::{self, BufRead, BufReader, Read, Write}; use std::thread::{self, JoinHandle}; use std::collections::HashMap; use std::sync::{Arc, Mutex}; // These modules are all glue to support reading the MSVC version from // the registry and from COM interfaces #[cfg(windows)] mod registry; #[cfg(windows)] #[macro_use] mod winapi; #[cfg(windows)] mod com; #[cfg(windows)] mod setup_config; pub mod windows_registry; /// A builder for compilation of a native static library. /// /// A `Build` is the main type of the `cc` crate and is used to control all the /// various configuration options and such of a compile. You'll find more /// documentation on each method itself. #[derive(Clone, Debug)] pub struct Build { include_directories: Vec, definitions: Vec<(String, Option)>, objects: Vec, flags: Vec, flags_supported: Vec, known_flag_support_status: Arc>>, files: Vec, cpp: bool, cpp_link_stdlib: Option>, cpp_set_stdlib: Option, cuda: bool, target: Option, host: Option, out_dir: Option, opt_level: Option, debug: Option, env: Vec<(OsString, OsString)>, compiler: Option, archiver: Option, cargo_metadata: bool, pic: Option, use_plt: Option, static_crt: Option, shared_flag: Option, static_flag: Option, warnings_into_errors: bool, warnings: Option, extra_warnings: Option, env_cache: Arc>>>, } /// Represents the types of errors that may occur while using cc-rs. #[derive(Clone, Debug)] enum ErrorKind { /// Error occurred while performing I/O. IOError, /// Invalid architecture supplied. ArchitectureInvalid, /// Environment variable not found, with the var in question as extra info. EnvVarNotFound, /// Error occurred while using external tools (ie: invocation of compiler). ToolExecError, /// Error occurred due to missing external tools. ToolNotFound, } /// Represents an internal error that occurred, with an explanation. #[derive(Clone, Debug)] pub struct Error { /// Describes the kind of error that occurred. kind: ErrorKind, /// More explanation of error that occurred. message: String, } impl Error { fn new(kind: ErrorKind, message: &str) -> Error { Error { kind: kind, message: message.to_owned(), } } } impl From for Error { fn from(e: io::Error) -> Error { Error::new(ErrorKind::IOError, &format!("{}", e)) } } /// Configuration used to represent an invocation of a C compiler. /// /// This can be used to figure out what compiler is in use, what the arguments /// to it are, and what the environment variables look like for the compiler. /// This can be used to further configure other build systems (e.g. forward /// along CC and/or CFLAGS) or the `to_command` method can be used to run the /// compiler itself. #[derive(Clone, Debug)] pub struct Tool { path: PathBuf, cc_wrapper_path: Option, cc_wrapper_args: Vec, args: Vec, env: Vec<(OsString, OsString)>, family: ToolFamily, cuda: bool, removed_args: Vec, } /// Represents the family of tools this tool belongs to. /// /// Each family of tools differs in how and what arguments they accept. /// /// Detection of a family is done on best-effort basis and may not accurately reflect the tool. #[derive(Copy, Clone, Debug, PartialEq)] enum ToolFamily { /// Tool is GNU Compiler Collection-like. Gnu, /// Tool is Clang-like. It differs from the GCC in a sense that it accepts superset of flags /// and its cross-compilation approach is different. Clang, /// Tool is the MSVC cl.exe. Msvc { clang_cl: bool }, } impl ToolFamily { /// What the flag to request debug info for this family of tools look like fn add_debug_flags(&self, cmd: &mut Tool) { match *self { ToolFamily::Msvc { .. } => { cmd.push_cc_arg("/Z7".into()); } ToolFamily::Gnu | ToolFamily::Clang => { cmd.push_cc_arg("-g".into()); cmd.push_cc_arg("-fno-omit-frame-pointer".into()); } } } /// What the flag to include directories into header search path looks like fn include_flag(&self) -> &'static str { match *self { ToolFamily::Msvc { .. } => "/I", ToolFamily::Gnu | ToolFamily::Clang => "-I", } } /// What the flag to request macro-expanded source output looks like fn expand_flag(&self) -> &'static str { match *self { ToolFamily::Msvc { .. } => "/E", ToolFamily::Gnu | ToolFamily::Clang => "-E", } } /// What the flags to enable all warnings fn warnings_flags(&self) -> &'static str { match *self { ToolFamily::Msvc { .. } => "/W4", ToolFamily::Gnu | ToolFamily::Clang => "-Wall", } } /// What the flags to enable extra warnings fn extra_warnings_flags(&self) -> Option<&'static str> { match *self { ToolFamily::Msvc { .. } => None, ToolFamily::Gnu | ToolFamily::Clang => Some("-Wextra"), } } /// What the flag to turn warning into errors fn warnings_to_errors_flag(&self) -> &'static str { match *self { ToolFamily::Msvc { .. } => "/WX", ToolFamily::Gnu | ToolFamily::Clang => "-Werror", } } /// NVCC-specific. Device code debug info flag. This is separate from the /// debug info flag passed to the C++ compiler. fn nvcc_debug_flag(&self) -> &'static str { match *self { ToolFamily::Msvc { .. } => unimplemented!(), ToolFamily::Gnu | ToolFamily::Clang => "-G", } } /// NVCC-specific. Redirect the following flag to the underlying C++ /// compiler. fn nvcc_redirect_flag(&self) -> &'static str { match *self { ToolFamily::Msvc { .. } => unimplemented!(), ToolFamily::Gnu | ToolFamily::Clang => "-Xcompiler", } } fn verbose_stderr(&self) -> bool { *self == ToolFamily::Clang } } /// Represents an object. /// /// This is a source file -> object file pair. #[derive(Clone, Debug)] struct Object { src: PathBuf, dst: PathBuf, } impl Object { /// Create a new source file -> object file pair. fn new(src: PathBuf, dst: PathBuf) -> Object { Object { src: src, dst: dst } } } impl Build { /// Construct a new instance of a blank set of configuration. /// /// This builder is finished with the [`compile`] function. /// /// [`compile`]: struct.Build.html#method.compile pub fn new() -> Build { Build { include_directories: Vec::new(), definitions: Vec::new(), objects: Vec::new(), flags: Vec::new(), flags_supported: Vec::new(), known_flag_support_status: Arc::new(Mutex::new(HashMap::new())), files: Vec::new(), shared_flag: None, static_flag: None, cpp: false, cpp_link_stdlib: None, cpp_set_stdlib: None, cuda: false, target: None, host: None, out_dir: None, opt_level: None, debug: None, env: Vec::new(), compiler: None, archiver: None, cargo_metadata: true, pic: None, use_plt: None, static_crt: None, warnings: None, extra_warnings: None, warnings_into_errors: false, env_cache: Arc::new(Mutex::new(HashMap::new())), } } /// Add a directory to the `-I` or include path for headers /// /// # Example /// /// ```no_run /// use std::path::Path; /// /// let library_path = Path::new("/path/to/library"); /// /// cc::Build::new() /// .file("src/foo.c") /// .include(library_path) /// .include("src") /// .compile("foo"); /// ``` pub fn include>(&mut self, dir: P) -> &mut Build { self.include_directories.push(dir.as_ref().to_path_buf()); self } /// Specify a `-D` variable with an optional value. /// /// # Example /// /// ```no_run /// cc::Build::new() /// .file("src/foo.c") /// .define("FOO", "BAR") /// .define("BAZ", None) /// .compile("foo"); /// ``` pub fn define<'a, V: Into>>(&mut self, var: &str, val: V) -> &mut Build { self.definitions .push((var.to_string(), val.into().map(|s| s.to_string()))); self } /// Add an arbitrary object file to link in pub fn object>(&mut self, obj: P) -> &mut Build { self.objects.push(obj.as_ref().to_path_buf()); self } /// Add an arbitrary flag to the invocation of the compiler /// /// # Example /// /// ```no_run /// cc::Build::new() /// .file("src/foo.c") /// .flag("-ffunction-sections") /// .compile("foo"); /// ``` pub fn flag(&mut self, flag: &str) -> &mut Build { self.flags.push(flag.to_string()); self } fn ensure_check_file(&self) -> Result { let out_dir = self.get_out_dir()?; let src = if self.cuda { assert!(self.cpp); out_dir.join("flag_check.cu") } else if self.cpp { out_dir.join("flag_check.cpp") } else { out_dir.join("flag_check.c") }; if !src.exists() { let mut f = fs::File::create(&src)?; write!(f, "int main(void) {{ return 0; }}")?; } Ok(src) } /// Run the compiler to test if it accepts the given flag. /// /// For a convenience method for setting flags conditionally, /// see `flag_if_supported()`. /// /// It may return error if it's unable to run the compilier with a test file /// (e.g. the compiler is missing or a write to the `out_dir` failed). /// /// Note: Once computed, the result of this call is stored in the /// `known_flag_support` field. If `is_flag_supported(flag)` /// is called again, the result will be read from the hash table. pub fn is_flag_supported(&self, flag: &str) -> Result { let mut known_status = self.known_flag_support_status.lock().unwrap(); if let Some(is_supported) = known_status.get(flag).cloned() { return Ok(is_supported); } let out_dir = self.get_out_dir()?; let src = self.ensure_check_file()?; let obj = out_dir.join("flag_check"); let target = self.get_target()?; let host = self.get_host()?; let mut cfg = Build::new(); cfg.flag(flag) .target(&target) .opt_level(0) .host(&host) .debug(false) .cpp(self.cpp) .cuda(self.cuda); let mut compiler = cfg.try_get_compiler()?; // Clang uses stderr for verbose output, which yields a false positive // result if the CFLAGS/CXXFLAGS include -v to aid in debugging. if compiler.family.verbose_stderr() { compiler.remove_arg("-v".into()); } let mut cmd = compiler.to_command(); let is_arm = target.contains("aarch64") || target.contains("arm"); command_add_output_file(&mut cmd, &obj, target.contains("msvc"), false, is_arm); // We need to explicitly tell msvc not to link and create an exe // in the root directory of the crate if target.contains("msvc") { cmd.arg("/c"); } cmd.arg(&src); let output = cmd.output()?; let is_supported = output.stderr.is_empty(); known_status.insert(flag.to_owned(), is_supported); Ok(is_supported) } /// Add an arbitrary flag to the invocation of the compiler if it supports it /// /// # Example /// /// ```no_run /// cc::Build::new() /// .file("src/foo.c") /// .flag_if_supported("-Wlogical-op") // only supported by GCC /// .flag_if_supported("-Wunreachable-code") // only supported by clang /// .compile("foo"); /// ``` pub fn flag_if_supported(&mut self, flag: &str) -> &mut Build { self.flags_supported.push(flag.to_string()); self } /// Set the `-shared` flag. /// /// When enabled, the compiler will produce a shared object which can /// then be linked with other objects to form an executable. /// /// # Example /// /// ```no_run /// cc::Build::new() /// .file("src/foo.c") /// .shared_flag(true) /// .compile("libfoo.so"); /// ``` pub fn shared_flag(&mut self, shared_flag: bool) -> &mut Build { self.shared_flag = Some(shared_flag); self } /// Set the `-static` flag. /// /// When enabled on systems that support dynamic linking, this prevents /// linking with the shared libraries. /// /// # Example /// /// ```no_run /// cc::Build::new() /// .file("src/foo.c") /// .shared_flag(true) /// .static_flag(true) /// .compile("foo"); /// ``` pub fn static_flag(&mut self, static_flag: bool) -> &mut Build { self.static_flag = Some(static_flag); self } /// Add a file which will be compiled pub fn file>(&mut self, p: P) -> &mut Build { self.files.push(p.as_ref().to_path_buf()); self } /// Add files which will be compiled pub fn files

(&mut self, p: P) -> &mut Build where P: IntoIterator, P::Item: AsRef, { for file in p.into_iter() { self.file(file); } self } /// Set C++ support. /// /// The other `cpp_*` options will only become active if this is set to /// `true`. pub fn cpp(&mut self, cpp: bool) -> &mut Build { self.cpp = cpp; self } /// Set CUDA C++ support. /// /// Enabling CUDA will pass the detected C/C++ toolchain as an argument to /// the CUDA compiler, NVCC. NVCC itself accepts some limited GNU-like args; /// any other arguments for the C/C++ toolchain will be redirected using /// "-Xcompiler" flags. /// /// If enabled, this also implicitly enables C++ support. pub fn cuda(&mut self, cuda: bool) -> &mut Build { self.cuda = cuda; if cuda { self.cpp = true; } self } /// Set warnings into errors flag. /// /// Disabled by default. /// /// Warning: turning warnings into errors only make sense /// if you are a developer of the crate using cc-rs. /// Some warnings only appear on some architecture or /// specific version of the compiler. Any user of this crate, /// or any other crate depending on it, could fail during /// compile time. /// /// # Example /// /// ```no_run /// cc::Build::new() /// .file("src/foo.c") /// .warnings_into_errors(true) /// .compile("libfoo.a"); /// ``` pub fn warnings_into_errors(&mut self, warnings_into_errors: bool) -> &mut Build { self.warnings_into_errors = warnings_into_errors; self } /// Set warnings flags. /// /// Adds some flags: /// - "/Wall" for MSVC. /// - "-Wall", "-Wextra" for GNU and Clang. /// /// Enabled by default. /// /// # Example /// /// ```no_run /// cc::Build::new() /// .file("src/foo.c") /// .warnings(false) /// .compile("libfoo.a"); /// ``` pub fn warnings(&mut self, warnings: bool) -> &mut Build { self.warnings = Some(warnings); self.extra_warnings = Some(warnings); self } /// Set extra warnings flags. /// /// Adds some flags: /// - nothing for MSVC. /// - "-Wextra" for GNU and Clang. /// /// Enabled by default. /// /// # Example /// /// ```no_run /// // Disables -Wextra, -Wall remains enabled: /// cc::Build::new() /// .file("src/foo.c") /// .extra_warnings(false) /// .compile("libfoo.a"); /// ``` pub fn extra_warnings(&mut self, warnings: bool) -> &mut Build { self.extra_warnings = Some(warnings); self } /// Set the standard library to link against when compiling with C++ /// support. /// /// The default value of this property depends on the current target: On /// OS X `Some("c++")` is used, when compiling for a Visual Studio based /// target `None` is used and for other targets `Some("stdc++")` is used. /// If the `CXXSTDLIB` environment variable is set, its value will /// override the default value. /// /// A value of `None` indicates that no automatic linking should happen, /// otherwise cargo will link against the specified library. /// /// The given library name must not contain the `lib` prefix. /// /// Common values: /// - `stdc++` for GNU /// - `c++` for Clang /// /// # Example /// /// ```no_run /// cc::Build::new() /// .file("src/foo.c") /// .shared_flag(true) /// .cpp_link_stdlib("stdc++") /// .compile("libfoo.so"); /// ``` pub fn cpp_link_stdlib<'a, V: Into>>( &mut self, cpp_link_stdlib: V, ) -> &mut Build { self.cpp_link_stdlib = Some(cpp_link_stdlib.into().map(|s| s.into())); self } /// Force the C++ compiler to use the specified standard library. /// /// Setting this option will automatically set `cpp_link_stdlib` to the same /// value. /// /// The default value of this option is always `None`. /// /// This option has no effect when compiling for a Visual Studio based /// target. /// /// This option sets the `-stdlib` flag, which is only supported by some /// compilers (clang, icc) but not by others (gcc). The library will not /// detect which compiler is used, as such it is the responsibility of the /// caller to ensure that this option is only used in conjuction with a /// compiler which supports the `-stdlib` flag. /// /// A value of `None` indicates that no specific C++ standard library should /// be used, otherwise `-stdlib` is added to the compile invocation. /// /// The given library name must not contain the `lib` prefix. /// /// Common values: /// - `stdc++` for GNU /// - `c++` for Clang /// /// # Example /// /// ```no_run /// cc::Build::new() /// .file("src/foo.c") /// .cpp_set_stdlib("c++") /// .compile("libfoo.a"); /// ``` pub fn cpp_set_stdlib<'a, V: Into>>( &mut self, cpp_set_stdlib: V, ) -> &mut Build { let cpp_set_stdlib = cpp_set_stdlib.into(); self.cpp_set_stdlib = cpp_set_stdlib.map(|s| s.into()); self.cpp_link_stdlib(cpp_set_stdlib); self } /// Configures the target this configuration will be compiling for. /// /// This option is automatically scraped from the `TARGET` environment /// variable by build scripts, so it's not required to call this function. /// /// # Example /// /// ```no_run /// cc::Build::new() /// .file("src/foo.c") /// .target("aarch64-linux-android") /// .compile("foo"); /// ``` pub fn target(&mut self, target: &str) -> &mut Build { self.target = Some(target.to_string()); self } /// Configures the host assumed by this configuration. /// /// This option is automatically scraped from the `HOST` environment /// variable by build scripts, so it's not required to call this function. /// /// # Example /// /// ```no_run /// cc::Build::new() /// .file("src/foo.c") /// .host("arm-linux-gnueabihf") /// .compile("foo"); /// ``` pub fn host(&mut self, host: &str) -> &mut Build { self.host = Some(host.to_string()); self } /// Configures the optimization level of the generated object files. /// /// This option is automatically scraped from the `OPT_LEVEL` environment /// variable by build scripts, so it's not required to call this function. pub fn opt_level(&mut self, opt_level: u32) -> &mut Build { self.opt_level = Some(opt_level.to_string()); self } /// Configures the optimization level of the generated object files. /// /// This option is automatically scraped from the `OPT_LEVEL` environment /// variable by build scripts, so it's not required to call this function. pub fn opt_level_str(&mut self, opt_level: &str) -> &mut Build { self.opt_level = Some(opt_level.to_string()); self } /// Configures whether the compiler will emit debug information when /// generating object files. /// /// This option is automatically scraped from the `PROFILE` environment /// variable by build scripts (only enabled when the profile is "debug"), so /// it's not required to call this function. pub fn debug(&mut self, debug: bool) -> &mut Build { self.debug = Some(debug); self } /// Configures the output directory where all object files and static /// libraries will be located. /// /// This option is automatically scraped from the `OUT_DIR` environment /// variable by build scripts, so it's not required to call this function. pub fn out_dir>(&mut self, out_dir: P) -> &mut Build { self.out_dir = Some(out_dir.as_ref().to_owned()); self } /// Configures the compiler to be used to produce output. /// /// This option is automatically determined from the target platform or a /// number of environment variables, so it's not required to call this /// function. pub fn compiler>(&mut self, compiler: P) -> &mut Build { self.compiler = Some(compiler.as_ref().to_owned()); self } /// Configures the tool used to assemble archives. /// /// This option is automatically determined from the target platform or a /// number of environment variables, so it's not required to call this /// function. pub fn archiver>(&mut self, archiver: P) -> &mut Build { self.archiver = Some(archiver.as_ref().to_owned()); self } /// Define whether metadata should be emitted for cargo allowing it to /// automatically link the binary. Defaults to `true`. /// /// The emitted metadata is: /// /// - `rustc-link-lib=static=`*compiled lib* /// - `rustc-link-search=native=`*target folder* /// - When target is MSVC, the ATL-MFC libs are added via `rustc-link-search=native=` /// - When C++ is enabled, the C++ stdlib is added via `rustc-link-lib` /// pub fn cargo_metadata(&mut self, cargo_metadata: bool) -> &mut Build { self.cargo_metadata = cargo_metadata; self } /// Configures whether the compiler will emit position independent code. /// /// This option defaults to `false` for `windows-gnu` targets and /// to `true` for all other targets. pub fn pic(&mut self, pic: bool) -> &mut Build { self.pic = Some(pic); self } /// Configures whether the Procedure Linkage Table is used for indirect /// calls into shared libraries. /// /// The PLT is used to provide features like lazy binding, but introduces /// a small performance loss due to extra pointer indirection. Setting /// `use_plt` to `false` can provide a small performance increase. /// /// Note that skipping the PLT requires a recent version of GCC/Clang. /// /// This only applies to ELF targets. It has no effect on other platforms. pub fn use_plt(&mut self, use_plt: bool) -> &mut Build { self.use_plt = Some(use_plt); self } /// Configures whether the /MT flag or the /MD flag will be passed to msvc build tools. /// /// This option defaults to `false`, and affect only msvc targets. pub fn static_crt(&mut self, static_crt: bool) -> &mut Build { self.static_crt = Some(static_crt); self } #[doc(hidden)] pub fn __set_env(&mut self, a: A, b: B) -> &mut Build where A: AsRef, B: AsRef, { self.env .push((a.as_ref().to_owned(), b.as_ref().to_owned())); self } /// Run the compiler, generating the file `output` /// /// This will return a result instead of panicing; see compile() for the complete description. pub fn try_compile(&self, output: &str) -> Result<(), Error> { let (lib_name, gnu_lib_name) = if output.starts_with("lib") && output.ends_with(".a") { (&output[3..output.len() - 2], output.to_owned()) } else { let mut gnu = String::with_capacity(5 + output.len()); gnu.push_str("lib"); gnu.push_str(&output); gnu.push_str(".a"); (output, gnu) }; let dst = self.get_out_dir()?; let mut objects = Vec::new(); for file in self.files.iter() { let obj = dst.join(file).with_extension("o"); let obj = if !obj.starts_with(&dst) { dst.join(obj.file_name().ok_or_else(|| { Error::new(ErrorKind::IOError, "Getting object file details failed.") })?) } else { obj }; match obj.parent() { Some(s) => fs::create_dir_all(s)?, None => { return Err(Error::new( ErrorKind::IOError, "Getting object file details failed.", )) } }; objects.push(Object::new(file.to_path_buf(), obj)); } self.compile_objects(&objects)?; self.assemble(lib_name, &dst.join(gnu_lib_name), &objects)?; if self.get_target()?.contains("msvc") { let compiler = self.get_base_compiler()?; let atlmfc_lib = compiler .env() .iter() .find(|&&(ref var, _)| var.as_os_str() == OsStr::new("LIB")) .and_then(|&(_, ref lib_paths)| { env::split_paths(lib_paths).find(|path| { let sub = Path::new("atlmfc/lib"); path.ends_with(sub) || path.parent().map_or(false, |p| p.ends_with(sub)) }) }); if let Some(atlmfc_lib) = atlmfc_lib { self.print(&format!( "cargo:rustc-link-search=native={}", atlmfc_lib.display() )); } } self.print(&format!("cargo:rustc-link-lib=static={}", lib_name)); self.print(&format!("cargo:rustc-link-search=native={}", dst.display())); // Add specific C++ libraries, if enabled. if self.cpp { if let Some(stdlib) = self.get_cpp_link_stdlib()? { self.print(&format!("cargo:rustc-link-lib={}", stdlib)); } } Ok(()) } /// Run the compiler, generating the file `output` /// /// The name `output` should be the name of the library. For backwards compatibility, /// the `output` may start with `lib` and end with `.a`. The Rust compilier will create /// the assembly with the lib prefix and .a extension. MSVC will create a file without prefix, /// ending with `.lib`. /// /// # Panics /// /// Panics if `output` is not formatted correctly or if one of the underlying /// compiler commands fails. It can also panic if it fails reading file names /// or creating directories. pub fn compile(&self, output: &str) { if let Err(e) = self.try_compile(output) { fail(&e.message); } } #[cfg(feature = "parallel")] fn compile_objects(&self, objs: &[Object]) -> Result<(), Error> { use self::rayon::prelude::*; if let Ok(amt) = env::var("NUM_JOBS") { if let Ok(amt) = amt.parse() { let _ = rayon::ThreadPoolBuilder::new() .num_threads(amt) .build_global(); } } // Check for any errors and return the first one found. objs.par_iter() .with_max_len(1) .map(|obj| self.compile_object(obj)) .collect() } #[cfg(not(feature = "parallel"))] fn compile_objects(&self, objs: &[Object]) -> Result<(), Error> { for obj in objs { self.compile_object(obj)?; } Ok(()) } fn compile_object(&self, obj: &Object) -> Result<(), Error> { let is_asm = obj.src.extension().and_then(|s| s.to_str()) == Some("asm"); let target = self.get_target()?; let msvc = target.contains("msvc"); let (mut cmd, name) = if msvc && is_asm { self.msvc_macro_assembler()? } else { let compiler = self.try_get_compiler()?; let mut cmd = compiler.to_command(); for &(ref a, ref b) in self.env.iter() { cmd.env(a, b); } ( cmd, compiler .path .file_name() .ok_or_else(|| Error::new(ErrorKind::IOError, "Failed to get compiler path."))? .to_string_lossy() .into_owned(), ) }; let is_arm = target.contains("aarch64") || target.contains("arm"); command_add_output_file(&mut cmd, &obj.dst, msvc, is_asm, is_arm); // armasm and armasm64 don't requrie -c option if !msvc || !is_asm || !is_arm { cmd.arg(if msvc { "/c" } else { "-c" }); } cmd.arg(&obj.src); run(&mut cmd, &name)?; Ok(()) } /// This will return a result instead of panicing; see expand() for the complete description. pub fn try_expand(&self) -> Result, Error> { let compiler = self.try_get_compiler()?; let mut cmd = compiler.to_command(); for &(ref a, ref b) in self.env.iter() { cmd.env(a, b); } cmd.arg(compiler.family.expand_flag()); assert!( self.files.len() <= 1, "Expand may only be called for a single file" ); for file in self.files.iter() { cmd.arg(file); } let name = compiler .path .file_name() .ok_or_else(|| Error::new(ErrorKind::IOError, "Failed to get compiler path."))? .to_string_lossy() .into_owned(); Ok(run_output(&mut cmd, &name)?) } /// Run the compiler, returning the macro-expanded version of the input files. /// /// This is only relevant for C and C++ files. /// /// # Panics /// Panics if more than one file is present in the config, or if compiler /// path has an invalid file name. /// /// # Example /// ```no_run /// let out = cc::Build::new().file("src/foo.c").expand(); /// ``` pub fn expand(&self) -> Vec { match self.try_expand() { Err(e) => fail(&e.message), Ok(v) => v, } } /// Get the compiler that's in use for this configuration. /// /// This function will return a `Tool` which represents the culmination /// of this configuration at a snapshot in time. The returned compiler can /// be inspected (e.g. the path, arguments, environment) to forward along to /// other tools, or the `to_command` method can be used to invoke the /// compiler itself. /// /// This method will take into account all configuration such as debug /// information, optimization level, include directories, defines, etc. /// Additionally, the compiler binary in use follows the standard /// conventions for this path, e.g. looking at the explicitly set compiler, /// environment variables (a number of which are inspected here), and then /// falling back to the default configuration. /// /// # Panics /// /// Panics if an error occurred while determining the architecture. pub fn get_compiler(&self) -> Tool { match self.try_get_compiler() { Ok(tool) => tool, Err(e) => fail(&e.message), } } /// Get the compiler that's in use for this configuration. /// /// This will return a result instead of panicing; see get_compiler() for the complete description. pub fn try_get_compiler(&self) -> Result { let opt_level = self.get_opt_level()?; let target = self.get_target()?; let mut cmd = self.get_base_compiler()?; // Non-target flags // If the flag is not conditioned on target variable, it belongs here :) match cmd.family { ToolFamily::Msvc { .. } => { assert!(!self.cuda, "CUDA C++ compilation not supported for MSVC, yet... but you are welcome to implement it :)"); cmd.args.push("/nologo".into()); let crt_flag = match self.static_crt { Some(true) => "/MT", Some(false) => "/MD", None => { let features = env::var("CARGO_CFG_TARGET_FEATURE").unwrap_or(String::new()); if features.contains("crt-static") { "/MT" } else { "/MD" } } }; cmd.args.push(crt_flag.into()); match &opt_level[..] { // Msvc uses /O1 to enable all optimizations that minimize code size. "z" | "s" | "1" => cmd.args.push("/O1".into()), // -O3 is a valid value for gcc and clang compilers, but not msvc. Cap to /O2. "2" | "3" => cmd.args.push("/O2".into()), _ => {} } } ToolFamily::Gnu | ToolFamily::Clang => { // arm-linux-androideabi-gcc 4.8 shipped with Android NDK does // not support '-Oz' if opt_level == "z" && cmd.family != ToolFamily::Clang { cmd.args.push("-Os".into()); } else { cmd.args.push(format!("-O{}", opt_level).into()); } if !target.contains("-ios") { cmd.push_cc_arg("-ffunction-sections".into()); cmd.push_cc_arg("-fdata-sections".into()); } if self.pic.unwrap_or(!target.contains("windows-gnu")) { cmd.push_cc_arg("-fPIC".into()); // PLT only applies if code is compiled with PIC support, // and only for ELF targets. if target.contains("linux") && !self.use_plt.unwrap_or(true) { cmd.push_cc_arg("-fno-plt".into()); } } } } for arg in self.envflags(if self.cpp { "CXXFLAGS" } else { "CFLAGS" }) { cmd.args.push(arg.into()); } if self.get_debug() { if self.cuda { let nvcc_debug_flag = cmd.family.nvcc_debug_flag().into(); cmd.args.push(nvcc_debug_flag); } let family = cmd.family; family.add_debug_flags(&mut cmd); } // Target flags match cmd.family { ToolFamily::Clang => { cmd.args.push(format!("--target={}", target).into()); } ToolFamily::Msvc { clang_cl } => { if clang_cl { if target.contains("x86_64") { cmd.args.push("-m64".into()); } else if target.contains("i586") { cmd.args.push("-m32".into()); cmd.args.push("/arch:IA32".into()); } else { cmd.args.push("-m32".into()); } } else { if target.contains("i586") { cmd.args.push("/ARCH:IA32".into()); } } // There is a check in corecrt.h that will generate a // compilation error if // _ARM_WINAPI_PARTITION_DESKTOP_SDK_AVAILABLE is // not defined to 1. The check was added in Windows // 8 days because only store apps were allowed on ARM. // This changed with the release of Windows 10 IoT Core. // The check will be going away in future versions of // the SDK, but for all released versions of the // Windows SDK it is required. if target.contains("arm") || target.contains("thumb") { cmd.args.push("/D_ARM_WINAPI_PARTITION_DESKTOP_SDK_AVAILABLE=1".into()); } } ToolFamily::Gnu => { if target.contains("i686") || target.contains("i586") { cmd.args.push("-m32".into()); } else if target == "x86_64-unknown-linux-gnux32" { cmd.args.push("-mx32".into()); } else if target.contains("x86_64") || target.contains("powerpc64") { cmd.args.push("-m64".into()); } if self.static_flag.is_none() { let features = env::var("CARGO_CFG_TARGET_FEATURE").unwrap_or(String::new()); if features.contains("crt-static") { cmd.args.push("-static".into()); } } // armv7 targets get to use armv7 instructions if (target.starts_with("armv7") || target.starts_with("thumbv7")) && target.contains("-linux-") { cmd.args.push("-march=armv7-a".into()); } // (x86 Android doesn't say "eabi") if target.contains("-androideabi") && target.contains("v7") { // -march=armv7-a handled above cmd.args.push("-mthumb".into()); if !target.contains("neon") { // On android we can guarantee some extra float instructions // (specified in the android spec online) // NEON guarantees even more; see below. cmd.args.push("-mfpu=vfpv3-d16".into()); } cmd.args.push("-mfloat-abi=softfp".into()); } if target.contains("neon") { cmd.args.push("-mfpu=neon-vfpv4".into()); } if target.starts_with("armv4t-unknown-linux-") { cmd.args.push("-march=armv4t".into()); cmd.args.push("-marm".into()); cmd.args.push("-mfloat-abi=soft".into()); } if target.starts_with("armv5te-unknown-linux-") { cmd.args.push("-march=armv5te".into()); cmd.args.push("-marm".into()); cmd.args.push("-mfloat-abi=soft".into()); } // For us arm == armv6 by default if target.starts_with("arm-unknown-linux-") { cmd.args.push("-march=armv6".into()); cmd.args.push("-marm".into()); if target.ends_with("hf") { cmd.args.push("-mfpu=vfp".into()); } else { cmd.args.push("-mfloat-abi=soft".into()); } } // We can guarantee some settings for FRC if target.starts_with("arm-frc-") { cmd.args.push("-march=armv7-a".into()); cmd.args.push("-mcpu=cortex-a9".into()); cmd.args.push("-mfpu=vfpv3".into()); cmd.args.push("-mfloat-abi=softfp".into()); cmd.args.push("-marm".into()); } // Turn codegen down on i586 to avoid some instructions. if target.starts_with("i586-unknown-linux-") { cmd.args.push("-march=pentium".into()); } // Set codegen level for i686 correctly if target.starts_with("i686-unknown-linux-") { cmd.args.push("-march=i686".into()); } // Looks like `musl-gcc` makes is hard for `-m32` to make its way // all the way to the linker, so we need to actually instruct the // linker that we're generating 32-bit executables as well. This'll // typically only be used for build scripts which transitively use // these flags that try to compile executables. if target == "i686-unknown-linux-musl" || target == "i586-unknown-linux-musl" { cmd.args.push("-Wl,-melf_i386".into()); } if target.starts_with("thumb") { cmd.args.push("-mthumb".into()); if target.ends_with("eabihf") { cmd.args.push("-mfloat-abi=hard".into()) } } if target.starts_with("thumbv6m") { cmd.args.push("-march=armv6s-m".into()); } if target.starts_with("thumbv7em") { cmd.args.push("-march=armv7e-m".into()); if target.ends_with("eabihf") { cmd.args.push("-mfpu=fpv4-sp-d16".into()) } } if target.starts_with("thumbv7m") { cmd.args.push("-march=armv7-m".into()); } if target.starts_with("thumbv8m.base") { cmd.args.push("-march=armv8-m.base".into()); } if target.starts_with("thumbv8m.main") { cmd.args.push("-march=armv8-m.main".into()); if target.ends_with("eabihf") { cmd.args.push("-mfpu=fpv5-sp-d16".into()) } } if target.starts_with("armebv7r") | target.starts_with("armv7r") { if target.starts_with("armeb") { cmd.args.push("-mbig-endian".into()); } else { cmd.args.push("-mlittle-endian".into()); } // ARM mode cmd.args.push("-marm".into()); // R Profile cmd.args.push("-march=armv7-r".into()); if target.ends_with("eabihf") { // Calling convention cmd.args.push("-mfloat-abi=hard".into()); // lowest common denominator FPU // (see Cortex-R4 technical reference manual) cmd.args.push("-mfpu=vfpv3-d16".into()) } else { // Calling convention cmd.args.push("-mfloat-abi=soft".into()); } } } } if target.contains("-ios") { // FIXME: potential bug. iOS is always compiled with Clang, but Gcc compiler may be // detected instead. self.ios_flags(&mut cmd)?; } if self.static_flag.unwrap_or(false) { cmd.args.push("-static".into()); } if self.shared_flag.unwrap_or(false) { cmd.args.push("-shared".into()); } if self.cpp { match (self.cpp_set_stdlib.as_ref(), cmd.family) { (None, _) => {} (Some(stdlib), ToolFamily::Gnu) | (Some(stdlib), ToolFamily::Clang) => { cmd.push_cc_arg(format!("-stdlib=lib{}", stdlib).into()); } _ => { println!( "cargo:warning=cpp_set_stdlib is specified, but the {:?} compiler \ does not support this option, ignored", cmd.family ); } } } for directory in self.include_directories.iter() { cmd.args.push(cmd.family.include_flag().into()); cmd.args.push(directory.into()); } // If warnings and/or extra_warnings haven't been explicitly set, // then we set them only if the environment doesn't already have // CFLAGS/CXXFLAGS, since those variables presumably already contain // the desired set of warnings flags. if self.warnings.unwrap_or(if self.has_flags() { false } else { true }) { let wflags = cmd.family.warnings_flags().into(); cmd.push_cc_arg(wflags); } if self.extra_warnings.unwrap_or(if self.has_flags() { false } else { true }) { if let Some(wflags) = cmd.family.extra_warnings_flags() { cmd.push_cc_arg(wflags.into()); } } for flag in self.flags.iter() { cmd.args.push(flag.into()); } for flag in self.flags_supported.iter() { if self.is_flag_supported(flag).unwrap_or(false) { cmd.push_cc_arg(flag.into()); } } for &(ref key, ref value) in self.definitions.iter() { let lead = if let ToolFamily::Msvc { .. } = cmd.family { "/" } else { "-" }; if let Some(ref value) = *value { cmd.args.push(format!("{}D{}={}", lead, key, value).into()); } else { cmd.args.push(format!("{}D{}", lead, key).into()); } } if self.warnings_into_errors { let warnings_to_errors_flag = cmd.family.warnings_to_errors_flag().into(); cmd.push_cc_arg(warnings_to_errors_flag); } Ok(cmd) } fn has_flags(&self) -> bool { let flags_env_var_name = if self.cpp { "CXXFLAGS" } else { "CFLAGS" }; let flags_env_var_value = self.get_var(flags_env_var_name); if let Ok(_) = flags_env_var_value { true } else { false } } fn msvc_macro_assembler(&self) -> Result<(Command, String), Error> { let target = self.get_target()?; let tool = if target.contains("x86_64") { "ml64.exe" } else if target.contains("arm") { "armasm.exe" } else if target.contains("aarch64") { "armasm64.exe" } else { "ml.exe" }; let mut cmd = windows_registry::find(&target, tool).unwrap_or_else(|| self.cmd(tool)); for directory in self.include_directories.iter() { cmd.arg("/I").arg(directory); } for &(ref key, ref value) in self.definitions.iter() { if let Some(ref value) = *value { cmd.arg(&format!("/D{}={}", key, value)); } else { cmd.arg(&format!("/D{}", key)); } } if target.contains("i686") || target.contains("i586") { cmd.arg("/safeseh"); } for flag in self.flags.iter() { cmd.arg(flag); } Ok((cmd, tool.to_string())) } fn assemble(&self, lib_name: &str, dst: &Path, objs: &[Object]) -> Result<(), Error> { // Delete the destination if it exists as the `ar` tool at least on Unix // appends to it, which we don't want. let _ = fs::remove_file(&dst); let objects: Vec<_> = objs.iter().map(|obj| obj.dst.clone()).collect(); let target = self.get_target()?; if target.contains("msvc") { let mut cmd = match self.archiver { Some(ref s) => self.cmd(s), None => windows_registry::find(&target, "lib.exe") .unwrap_or_else(|| self.cmd("lib.exe")), }; let mut out = OsString::from("/OUT:"); out.push(dst); cmd.arg(out).arg("/nologo"); // Similar to https://github.com/rust-lang/rust/pull/47507 // and https://github.com/rust-lang/rust/pull/48548 let estimated_command_line_len = objects .iter() .chain(&self.objects) .map(|a| a.as_os_str().len()) .sum::(); if estimated_command_line_len > 1024 * 6 { let mut args = String::from("\u{FEFF}"); // BOM for arg in objects.iter().chain(&self.objects) { args.push('"'); for c in arg.to_str().unwrap().chars() { if c == '"' { args.push('\\') } args.push(c) } args.push('"'); args.push('\n'); } let mut utf16le = Vec::new(); for code_unit in args.encode_utf16() { utf16le.push(code_unit as u8); utf16le.push((code_unit >> 8) as u8); } let mut args_file = OsString::from(dst); args_file.push(".args"); fs::File::create(&args_file) .unwrap() .write_all(&utf16le) .unwrap(); let mut args_file_arg = OsString::from("@"); args_file_arg.push(args_file); cmd.arg(args_file_arg); } else { cmd.args(&objects).args(&self.objects); } run(&mut cmd, "lib.exe")?; // The Rust compiler will look for libfoo.a and foo.lib, but the // MSVC linker will also be passed foo.lib, so be sure that both // exist for now. let lib_dst = dst.with_file_name(format!("{}.lib", lib_name)); let _ = fs::remove_file(&lib_dst); match fs::hard_link(&dst, &lib_dst).or_else(|_| { // if hard-link fails, just copy (ignoring the number of bytes written) fs::copy(&dst, &lib_dst).map(|_| ()) }) { Ok(_) => (), Err(_) => { return Err(Error::new( ErrorKind::IOError, "Could not copy or create a hard-link to the generated lib file.", )) } }; } else { let (mut ar, cmd) = self.get_ar()?; run( ar.arg("crs").arg(dst).args(&objects).args(&self.objects), &cmd, )?; } Ok(()) } fn ios_flags(&self, cmd: &mut Tool) -> Result<(), Error> { enum ArchSpec { Device(&'static str), Simulator(&'static str), } let target = self.get_target()?; let arch = target.split('-').nth(0).ok_or_else(|| { Error::new( ErrorKind::ArchitectureInvalid, "Unknown architecture for iOS target.", ) })?; let arch = match arch { "arm" | "armv7" | "thumbv7" => ArchSpec::Device("armv7"), "armv7s" | "thumbv7s" => ArchSpec::Device("armv7s"), "arm64" | "aarch64" => ArchSpec::Device("arm64"), "i386" | "i686" => ArchSpec::Simulator("-m32"), "x86_64" => ArchSpec::Simulator("-m64"), _ => { return Err(Error::new( ErrorKind::ArchitectureInvalid, "Unknown architecture for iOS target.", )) } }; let sdk = match arch { ArchSpec::Device(arch) => { cmd.args.push("-arch".into()); cmd.args.push(arch.into()); cmd.args.push("-miphoneos-version-min=7.0".into()); "iphoneos" } ArchSpec::Simulator(arch) => { cmd.args.push(arch.into()); cmd.args.push("-mios-simulator-version-min=7.0".into()); "iphonesimulator" } }; self.print(&format!("Detecting iOS SDK path for {}", sdk)); let sdk_path = self.cmd("xcrun") .arg("--show-sdk-path") .arg("--sdk") .arg(sdk) .stderr(Stdio::inherit()) .output()? .stdout; let sdk_path = match String::from_utf8(sdk_path) { Ok(p) => p, Err(_) => { return Err(Error::new( ErrorKind::IOError, "Unable to determine iOS SDK path.", )) } }; cmd.args.push("-isysroot".into()); cmd.args.push(sdk_path.trim().into()); cmd.args.push("-fembed-bitcode".into()); /* * TODO we probably ultimatedly want the -fembed-bitcode-marker flag * but can't have it now because of an issue in LLVM: * https://github.com/alexcrichton/cc-rs/issues/301 * https://github.com/rust-lang/rust/pull/48896#comment-372192660 */ /* if self.get_opt_level()? == "0" { cmd.args.push("-fembed-bitcode-marker".into()); } */ Ok(()) } fn cmd>(&self, prog: P) -> Command { let mut cmd = Command::new(prog); for &(ref a, ref b) in self.env.iter() { cmd.env(a, b); } cmd } fn get_base_compiler(&self) -> Result { if let Some(ref c) = self.compiler { return Ok(Tool::new(c.clone())); } let host = self.get_host()?; let target = self.get_target()?; let (env, msvc, gnu, traditional, clang) = if self.cpp { ("CXX", "cl.exe", "g++", "c++", "clang++") } else { ("CC", "cl.exe", "gcc", "cc", "clang") }; // On Solaris, c++/cc unlikely to exist or be correct. let default = if host.contains("solaris") { gnu } else { traditional }; let cl_exe = windows_registry::find_tool(&target, "cl.exe"); let tool_opt: Option = self.env_tool(env) .map(|(tool, cc, args)| { // chop off leading/trailing whitespace to work around // semi-buggy build scripts which are shared in // makefiles/configure scripts (where spaces are far more // lenient) let mut t = Tool::new(PathBuf::from(tool.trim())); if let Some(cc) = cc { t.cc_wrapper_path = Some(PathBuf::from(cc)); } for arg in args { t.cc_wrapper_args.push(arg.into()); } t }) .or_else(|| { if target.contains("emscripten") { let tool = if self.cpp { "em++" } else { "emcc" }; // Windows uses bat file so we have to be a bit more specific if cfg!(windows) { let mut t = Tool::new(PathBuf::from("cmd")); t.args.push("/c".into()); t.args.push(format!("{}.bat", tool).into()); Some(t) } else { Some(Tool::new(PathBuf::from(tool))) } } else { None } }) .or_else(|| cl_exe.clone()); let tool = match tool_opt { Some(t) => t, None => { let compiler = if host.contains("windows") && target.contains("windows") { if target.contains("msvc") { msvc.to_string() } else { format!("{}.exe", gnu) } } else if target.contains("android") { let target = target .replace("armv7neon", "arm") .replace("armv7", "arm") .replace("thumbv7neon", "arm") .replace("thumbv7", "arm"); let gnu_compiler = format!("{}-{}", target, gnu); let clang_compiler = format!("{}-{}", target, clang); // Check if gnu compiler is present // if not, use clang if Command::new(&gnu_compiler).spawn().is_ok() { gnu_compiler } else { clang_compiler } } else if target.contains("cloudabi") { format!("{}-{}", target, traditional) } else if self.get_host()? != target { // CROSS_COMPILE is of the form: "arm-linux-gnueabi-" let cc_env = self.getenv("CROSS_COMPILE"); let cross_compile = cc_env.as_ref().map(|s| s.trim_right_matches('-')); let prefix = cross_compile.or(match &target[..] { "aarch64-unknown-linux-gnu" => Some("aarch64-linux-gnu"), "aarch64-unknown-linux-musl" => Some("aarch64-linux-musl"), "aarch64-unknown-netbsd" => Some("aarch64--netbsd"), "arm-unknown-linux-gnueabi" => Some("arm-linux-gnueabi"), "armv4t-unknown-linux-gnueabi" => Some("arm-linux-gnueabi"), "armv5te-unknown-linux-gnueabi" => Some("arm-linux-gnueabi"), "arm-frc-linux-gnueabi" => Some("arm-frc-linux-gnueabi"), "arm-unknown-linux-gnueabihf" => Some("arm-linux-gnueabihf"), "arm-unknown-linux-musleabi" => Some("arm-linux-musleabi"), "arm-unknown-linux-musleabihf" => Some("arm-linux-musleabihf"), "arm-unknown-netbsd-eabi" => Some("arm--netbsdelf-eabi"), "armv6-unknown-netbsd-eabihf" => Some("armv6--netbsdelf-eabihf"), "armv7-unknown-linux-gnueabihf" => Some("arm-linux-gnueabihf"), "armv7-unknown-linux-musleabihf" => Some("arm-linux-musleabihf"), "armv7neon-unknown-linux-gnueabihf" => Some("arm-linux-gnueabihf"), "armv7neon-unknown-linux-musleabihf" => Some("arm-linux-musleabihf"), "thumbv7-unknown-linux-gnueabihf" => Some("arm-linux-gnueabihf"), "thumbv7-unknown-linux-musleabihf" => Some("arm-linux-musleabihf"), "thumbv7neon-unknown-linux-gnueabihf" => Some("arm-linux-gnueabihf"), "thumbv7neon-unknown-linux-musleabihf" => Some("arm-linux-musleabihf"), "armv7-unknown-netbsd-eabihf" => Some("armv7--netbsdelf-eabihf"), "i586-unknown-linux-musl" => Some("musl"), "i686-pc-windows-gnu" => Some("i686-w64-mingw32"), "i686-unknown-linux-musl" => Some("musl"), "i686-unknown-netbsd" => Some("i486--netbsdelf"), "mips-unknown-linux-gnu" => Some("mips-linux-gnu"), "mipsel-unknown-linux-gnu" => Some("mipsel-linux-gnu"), "mips64-unknown-linux-gnuabi64" => Some("mips64-linux-gnuabi64"), "mips64el-unknown-linux-gnuabi64" => Some("mips64el-linux-gnuabi64"), "powerpc-unknown-linux-gnu" => Some("powerpc-linux-gnu"), "powerpc-unknown-linux-gnuspe" => Some("powerpc-linux-gnuspe"), "powerpc-unknown-netbsd" => Some("powerpc--netbsd"), "powerpc64-unknown-linux-gnu" => Some("powerpc-linux-gnu"), "powerpc64le-unknown-linux-gnu" => Some("powerpc64le-linux-gnu"), "s390x-unknown-linux-gnu" => Some("s390x-linux-gnu"), "sparc-unknown-linux-gnu" => Some("sparc-linux-gnu"), "sparc64-unknown-linux-gnu" => Some("sparc64-linux-gnu"), "sparc64-unknown-netbsd" => Some("sparc64--netbsd"), "sparcv9-sun-solaris" => Some("sparcv9-sun-solaris"), "armebv7r-none-eabi" => Some("arm-none-eabi"), "armebv7r-none-eabihf" => Some("arm-none-eabi"), "armv7r-none-eabi" => Some("arm-none-eabi"), "armv7r-none-eabihf" => Some("arm-none-eabi"), "thumbv6m-none-eabi" => Some("arm-none-eabi"), "thumbv7em-none-eabi" => Some("arm-none-eabi"), "thumbv7em-none-eabihf" => Some("arm-none-eabi"), "thumbv7m-none-eabi" => Some("arm-none-eabi"), "thumbv8m.base-none-eabi" => Some("arm-none-eabi"), "thumbv8m.main-none-eabi" => Some("arm-none-eabi"), "thumbv8m.main-none-eabihf" => Some("arm-none-eabi"), "x86_64-pc-windows-gnu" => Some("x86_64-w64-mingw32"), "x86_64-rumprun-netbsd" => Some("x86_64-rumprun-netbsd"), "x86_64-unknown-linux-musl" => Some("musl"), "x86_64-unknown-netbsd" => Some("x86_64--netbsd"), _ => None, }); match prefix { Some(prefix) => format!("{}-{}", prefix, gnu), None => default.to_string(), } } else { default.to_string() }; Tool::new(PathBuf::from(compiler)) } }; let mut tool = if self.cuda { assert!( tool.args.is_empty(), "CUDA compilation currently assumes empty pre-existing args" ); let nvcc = match self.get_var("NVCC") { Err(_) => "nvcc".into(), Ok(nvcc) => nvcc, }; let mut nvcc_tool = Tool::with_features(PathBuf::from(nvcc), self.cuda); nvcc_tool .args .push(format!("-ccbin={}", tool.path.display()).into()); nvcc_tool } else { tool }; // If we found `cl.exe` in our environment, the tool we're returning is // an MSVC-like tool, *and* no env vars were set then set env vars for // the tool that we're returning. // // Env vars are needed for things like `link.exe` being put into PATH as // well as header include paths sometimes. These paths are automatically // included by default but if the `CC` or `CXX` env vars are set these // won't be used. This'll ensure that when the env vars are used to // configure for invocations like `clang-cl` we still get a "works out // of the box" experience. if let Some(cl_exe) = cl_exe { if tool.family == (ToolFamily::Msvc { clang_cl: true }) && tool.env.len() == 0 && target.contains("msvc") { for &(ref k, ref v) in cl_exe.env.iter() { tool.env.push((k.to_owned(), v.to_owned())); } } } Ok(tool) } fn get_var(&self, var_base: &str) -> Result { let target = self.get_target()?; let host = self.get_host()?; let kind = if host == target { "HOST" } else { "TARGET" }; let target_u = target.replace("-", "_"); let res = self.getenv(&format!("{}_{}", var_base, target)) .or_else(|| self.getenv(&format!("{}_{}", var_base, target_u))) .or_else(|| self.getenv(&format!("{}_{}", kind, var_base))) .or_else(|| self.getenv(var_base)); match res { Some(res) => Ok(res), None => Err(Error::new( ErrorKind::EnvVarNotFound, &format!("Could not find environment variable {}.", var_base), )), } } fn envflags(&self, name: &str) -> Vec { self.get_var(name) .unwrap_or(String::new()) .split(|c: char| c.is_whitespace()) .filter(|s| !s.is_empty()) .map(|s| s.to_string()) .collect() } /// Returns compiler path, optional modifier name from whitelist, and arguments vec fn env_tool(&self, name: &str) -> Option<(String, Option, Vec)> { let tool = match self.get_var(name) { Ok(tool) => tool, Err(_) => return None, }; // If this is an exact path on the filesystem we don't want to do any // interpretation at all, just pass it on through. This'll hopefully get // us to support spaces-in-paths. if Path::new(&tool).exists() { return Some((tool, None, Vec::new())); } // Ok now we want to handle a couple of scenarios. We'll assume from // here on out that spaces are splitting separate arguments. Two major // features we want to support are: // // CC='sccache cc' // // aka using `sccache` or any other wrapper/caching-like-thing for // compilations. We want to know what the actual compiler is still, // though, because our `Tool` API support introspection of it to see // what compiler is in use. // // additionally we want to support // // CC='cc -flag' // // where the CC env var is used to also pass default flags to the C // compiler. // // It's true that everything here is a bit of a pain, but apparently if // you're not literally make or bash then you get a lot of bug reports. let known_wrappers = ["ccache", "distcc", "sccache", "icecc"]; let mut parts = tool.split_whitespace(); let maybe_wrapper = match parts.next() { Some(s) => s, None => return None, }; let file_stem = Path::new(maybe_wrapper) .file_stem() .unwrap() .to_str() .unwrap(); if known_wrappers.contains(&file_stem) { if let Some(compiler) = parts.next() { return Some(( compiler.to_string(), Some(maybe_wrapper.to_string()), parts.map(|s| s.to_string()).collect(), )); } } Some(( maybe_wrapper.to_string(), None, parts.map(|s| s.to_string()).collect(), )) } /// Returns the default C++ standard library for the current target: `libc++` /// for OS X and `libstdc++` for anything else. fn get_cpp_link_stdlib(&self) -> Result, Error> { match self.cpp_link_stdlib.clone() { Some(s) => Ok(s), None => { if let Ok(stdlib) = self.get_var("CXXSTDLIB") { if stdlib.is_empty() { Ok(None) } else { Ok(Some(stdlib)) } } else { let target = self.get_target()?; if target.contains("msvc") { Ok(None) } else if target.contains("apple") { Ok(Some("c++".to_string())) } else if target.contains("freebsd") { Ok(Some("c++".to_string())) } else if target.contains("openbsd") { Ok(Some("c++".to_string())) } else { Ok(Some("stdc++".to_string())) } } } } } fn get_ar(&self) -> Result<(Command, String), Error> { if let Some(ref p) = self.archiver { let name = p.file_name().and_then(|s| s.to_str()).unwrap_or("ar"); return Ok((self.cmd(p), name.to_string())); } if let Ok(p) = self.get_var("AR") { return Ok((self.cmd(&p), p)); } let program = if self.get_target()?.contains("android") { format!("{}-ar", self.get_target()?.replace("armv7", "arm")) } else if self.get_target()?.contains("emscripten") { // Windows use bat files so we have to be a bit more specific if cfg!(windows) { let mut cmd = self.cmd("cmd"); cmd.arg("/c").arg("emar.bat"); return Ok((cmd, "emar.bat".to_string())); } "emar".to_string() } else { "ar".to_string() }; Ok((self.cmd(&program), program)) } fn get_target(&self) -> Result { match self.target.clone() { Some(t) => Ok(t), None => Ok(self.getenv_unwrap("TARGET")?), } } fn get_host(&self) -> Result { match self.host.clone() { Some(h) => Ok(h), None => Ok(self.getenv_unwrap("HOST")?), } } fn get_opt_level(&self) -> Result { match self.opt_level.as_ref().cloned() { Some(ol) => Ok(ol), None => Ok(self.getenv_unwrap("OPT_LEVEL")?), } } fn get_debug(&self) -> bool { self.debug.unwrap_or_else(|| match self.getenv("DEBUG") { Some(s) => s != "false", None => false, }) } fn get_out_dir(&self) -> Result { match self.out_dir.clone() { Some(p) => Ok(p), None => Ok(env::var_os("OUT_DIR").map(PathBuf::from).ok_or_else(|| { Error::new( ErrorKind::EnvVarNotFound, "Environment variable OUT_DIR not defined.", ) })?), } } fn getenv(&self, v: &str) -> Option { let mut cache = self.env_cache.lock().unwrap(); if let Some(val) = cache.get(v) { return val.clone() } let r = env::var(v).ok(); self.print(&format!("{} = {:?}", v, r)); cache.insert(v.to_string(), r.clone()); r } fn getenv_unwrap(&self, v: &str) -> Result { match self.getenv(v) { Some(s) => Ok(s), None => Err(Error::new( ErrorKind::EnvVarNotFound, &format!("Environment variable {} not defined.", v.to_string()), )), } } fn print(&self, s: &str) { if self.cargo_metadata { println!("{}", s); } } } impl Default for Build { fn default() -> Build { Build::new() } } impl Tool { fn new(path: PathBuf) -> Tool { Tool::with_features(path, false) } fn with_features(path: PathBuf, cuda: bool) -> Tool { // Try to detect family of the tool from its name, falling back to Gnu. let family = if let Some(fname) = path.file_name().and_then(|p| p.to_str()) { if fname.contains("clang-cl") { ToolFamily::Msvc { clang_cl: true } } else if fname.contains("cl") && !fname.contains("cloudabi") && !fname.contains("uclibc") && !fname.contains("clang") { ToolFamily::Msvc { clang_cl: false } } else if fname.contains("clang") { ToolFamily::Clang } else { ToolFamily::Gnu } } else { ToolFamily::Gnu }; Tool { path: path, cc_wrapper_path: None, cc_wrapper_args: Vec::new(), args: Vec::new(), env: Vec::new(), family: family, cuda: cuda, removed_args: Vec::new(), } } /// Add an argument to be stripped from the final command arguments. fn remove_arg(&mut self, flag: OsString) { self.removed_args.push(flag); } /// Add a flag, and optionally prepend the NVCC wrapper flag "-Xcompiler". /// /// Currently this is only used for compiling CUDA sources, since NVCC only /// accepts a limited set of GNU-like flags, and the rest must be prefixed /// with a "-Xcompiler" flag to get passed to the underlying C++ compiler. fn push_cc_arg(&mut self, flag: OsString) { if self.cuda { self.args.push(self.family.nvcc_redirect_flag().into()); } self.args.push(flag); } /// Converts this compiler into a `Command` that's ready to be run. /// /// This is useful for when the compiler needs to be executed and the /// command returned will already have the initial arguments and environment /// variables configured. pub fn to_command(&self) -> Command { let mut cmd = match self.cc_wrapper_path { Some(ref cc_wrapper_path) => { let mut cmd = Command::new(&cc_wrapper_path); cmd.arg(&self.path); cmd } None => Command::new(&self.path), }; cmd.args(&self.cc_wrapper_args); let value = self.args.iter().filter(|a| !self.removed_args.contains(a)).collect::>(); cmd.args(&value); for &(ref k, ref v) in self.env.iter() { cmd.env(k, v); } cmd } /// Returns the path for this compiler. /// /// Note that this may not be a path to a file on the filesystem, e.g. "cc", /// but rather something which will be resolved when a process is spawned. pub fn path(&self) -> &Path { &self.path } /// Returns the default set of arguments to the compiler needed to produce /// executables for the target this compiler generates. pub fn args(&self) -> &[OsString] { &self.args } /// Returns the set of environment variables needed for this compiler to /// operate. /// /// This is typically only used for MSVC compilers currently. pub fn env(&self) -> &[(OsString, OsString)] { &self.env } /// Returns the compiler command in format of CC environment variable. /// Or empty string if CC env was not present /// /// This is typically used by configure script pub fn cc_env(&self) -> OsString { match self.cc_wrapper_path { Some(ref cc_wrapper_path) => { let mut cc_env = cc_wrapper_path.as_os_str().to_owned(); cc_env.push(" "); cc_env.push(self.path.to_path_buf().into_os_string()); for arg in self.cc_wrapper_args.iter() { cc_env.push(" "); cc_env.push(arg); } cc_env } None => OsString::from(""), } } /// Returns the compiler flags in format of CFLAGS environment variable. /// Important here - this will not be CFLAGS from env, its internal gcc's flags to use as CFLAGS /// This is typically used by configure script pub fn cflags_env(&self) -> OsString { let mut flags = OsString::new(); for (i, arg) in self.args.iter().enumerate() { if i > 0 { flags.push(" "); } flags.push(arg); } flags } /// Whether the tool is GNU Compiler Collection-like. pub fn is_like_gnu(&self) -> bool { self.family == ToolFamily::Gnu } /// Whether the tool is Clang-like. pub fn is_like_clang(&self) -> bool { self.family == ToolFamily::Clang } /// Whether the tool is MSVC-like. pub fn is_like_msvc(&self) -> bool { match self.family { ToolFamily::Msvc { .. } => true, _ => false, } } } fn run(cmd: &mut Command, program: &str) -> Result<(), Error> { let (mut child, print) = spawn(cmd, program)?; let status = match child.wait() { Ok(s) => s, Err(_) => { return Err(Error::new( ErrorKind::ToolExecError, &format!( "Failed to wait on spawned child process, command {:?} with args {:?}.", cmd, program ), )) } }; print.join().unwrap(); println!("{}", status); if status.success() { Ok(()) } else { Err(Error::new( ErrorKind::ToolExecError, &format!( "Command {:?} with args {:?} did not execute successfully (status code {}).", cmd, program, status ), )) } } fn run_output(cmd: &mut Command, program: &str) -> Result, Error> { cmd.stdout(Stdio::piped()); let (mut child, print) = spawn(cmd, program)?; let mut stdout = vec![]; child .stdout .take() .unwrap() .read_to_end(&mut stdout) .unwrap(); let status = match child.wait() { Ok(s) => s, Err(_) => { return Err(Error::new( ErrorKind::ToolExecError, &format!( "Failed to wait on spawned child process, command {:?} with args {:?}.", cmd, program ), )) } }; print.join().unwrap(); println!("{}", status); if status.success() { Ok(stdout) } else { Err(Error::new( ErrorKind::ToolExecError, &format!( "Command {:?} with args {:?} did not execute successfully (status code {}).", cmd, program, status ), )) } } fn spawn(cmd: &mut Command, program: &str) -> Result<(Child, JoinHandle<()>), Error> { println!("running: {:?}", cmd); // Capture the standard error coming from these programs, and write it out // with cargo:warning= prefixes. Note that this is a bit wonky to avoid // requiring the output to be UTF-8, we instead just ship bytes from one // location to another. match cmd.stderr(Stdio::piped()).spawn() { Ok(mut child) => { let stderr = BufReader::new(child.stderr.take().unwrap()); let print = thread::spawn(move || { for line in stderr.split(b'\n').filter_map(|l| l.ok()) { print!("cargo:warning="); std::io::stdout().write_all(&line).unwrap(); println!(""); } }); Ok((child, print)) } Err(ref e) if e.kind() == io::ErrorKind::NotFound => { let extra = if cfg!(windows) { " (see https://github.com/alexcrichton/cc-rs#compile-time-requirements \ for help)" } else { "" }; Err(Error::new( ErrorKind::ToolNotFound, &format!("Failed to find tool. Is `{}` installed?{}", program, extra), )) } Err(_) => Err(Error::new( ErrorKind::ToolExecError, &format!("Command {:?} with args {:?} failed to start.", cmd, program), )), } } fn fail(s: &str) -> ! { panic!("\n\nInternal error occurred: {}\n\n", s) } fn command_add_output_file(cmd: &mut Command, dst: &Path, msvc: bool, is_asm: bool, is_arm: bool) { if msvc && is_asm && is_arm { cmd.arg("-o").arg(&dst); } else if msvc && is_asm { cmd.arg("/Fo").arg(dst); } else if msvc { let mut s = OsString::from("/Fo"); s.push(&dst); cmd.arg(s); } else { cmd.arg("-o").arg(&dst); } }