// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A typesafe bitmask flag generator useful for sets of C-style bitmask flags. //! It can be used for creating typesafe wrappers around C APIs. //! //! The `bitflags!` macro generates a `struct` that manages a set of flags. The //! flags should only be defined for integer types, otherwise unexpected type //! errors may occur at compile time. //! //! # Example //! //! ``` //! #[macro_use] //! extern crate bitflags; //! //! bitflags! { //! struct Flags: u32 { //! const A = 0b00000001; //! const B = 0b00000010; //! const C = 0b00000100; //! const ABC = Self::A.bits | Self::B.bits | Self::C.bits; //! } //! } //! //! fn main() { //! let e1 = Flags::A | Flags::C; //! let e2 = Flags::B | Flags::C; //! assert_eq!((e1 | e2), Flags::ABC); // union //! assert_eq!((e1 & e2), Flags::C); // intersection //! assert_eq!((e1 - e2), Flags::A); // set difference //! assert_eq!(!e2, Flags::A); // set complement //! } //! ``` //! //! See [`example_generated::Flags`](./example_generated/struct.Flags.html) for documentation of code //! generated by the above `bitflags!` expansion. //! //! The generated `struct`s can also be extended with type and trait //! implementations: //! //! ``` //! #[macro_use] //! extern crate bitflags; //! //! use std::fmt; //! //! bitflags! { //! struct Flags: u32 { //! const A = 0b00000001; //! const B = 0b00000010; //! } //! } //! //! impl Flags { //! pub fn clear(&mut self) { //! self.bits = 0; // The `bits` field can be accessed from within the //! // same module where the `bitflags!` macro was invoked. //! } //! } //! //! impl fmt::Display for Flags { //! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { //! write!(f, "hi!") //! } //! } //! //! fn main() { //! let mut flags = Flags::A | Flags::B; //! flags.clear(); //! assert!(flags.is_empty()); //! assert_eq!(format!("{}", flags), "hi!"); //! assert_eq!(format!("{:?}", Flags::A | Flags::B), "A | B"); //! assert_eq!(format!("{:?}", Flags::B), "B"); //! } //! ``` //! //! # Visibility //! //! The generated struct and its associated flag constants are not exported //! out of the current module by default. A definition can be exported out of //! the current module by adding `pub` before `flags`: //! //! ``` //! #[macro_use] //! extern crate bitflags; //! //! mod example { //! bitflags! { //! pub struct Flags1: u32 { //! const A = 0b00000001; //! } //! } //! bitflags! { //! # pub //! struct Flags2: u32 { //! const B = 0b00000010; //! } //! } //! } //! //! fn main() { //! let flag1 = example::Flags1::A; //! let flag2 = example::Flags2::B; // error: const `B` is private //! } //! ``` //! //! # Attributes //! //! Attributes can be attached to the generated `struct` by placing them //! before the `flags` keyword. //! //! # Trait implementations //! //! The `Copy`, `Clone`, `PartialEq`, `Eq`, `PartialOrd`, `Ord` and `Hash` //! traits automatically derived for the `struct` using the `derive` attribute. //! Additional traits can be derived by providing an explicit `derive` //! attribute on `flags`. //! //! The `Extend` and `FromIterator` traits are implemented for the `struct`, //! too: `Extend` adds the union of the instances of the `struct` iterated over, //! while `FromIterator` calculates the union. //! //! The `Binary`, `Debug`, `LowerHex`, `Octal` and `UpperHex` trait is also //! implemented by displaying the bits value of the internal struct. //! //! ## Operators //! //! The following operator traits are implemented for the generated `struct`: //! //! - `BitOr` and `BitOrAssign`: union //! - `BitAnd` and `BitAndAssign`: intersection //! - `BitXor` and `BitXorAssign`: toggle //! - `Sub` and `SubAssign`: set difference //! - `Not`: set complement //! //! # Methods //! //! The following methods are defined for the generated `struct`: //! //! - `empty`: an empty set of flags //! - `all`: the set of all defined flags //! - `bits`: the raw value of the flags currently stored //! - `from_bits`: convert from underlying bit representation, unless that //! representation contains bits that do not correspond to a //! defined flag //! - `from_bits_truncate`: convert from underlying bit representation, dropping //! any bits that do not correspond to defined flags //! - `from_bits_unchecked`: convert from underlying bit representation, keeping //! all bits (even those not corresponding to defined //! flags) //! - `is_empty`: `true` if no flags are currently stored //! - `is_all`: `true` if currently set flags exactly equal all defined flags //! - `intersects`: `true` if there are flags common to both `self` and `other` //! - `contains`: `true` all of the flags in `other` are contained within `self` //! - `insert`: inserts the specified flags in-place //! - `remove`: removes the specified flags in-place //! - `toggle`: the specified flags will be inserted if not present, and removed //! if they are. //! - `set`: inserts or removes the specified flags depending on the passed value //! //! ## Default //! //! The `Default` trait is not automatically implemented for the generated struct. //! //! If your default value is equal to `0` (which is the same value as calling `empty()` //! on the generated struct), you can simply derive `Default`: //! //! ``` //! #[macro_use] //! extern crate bitflags; //! //! bitflags! { //! // Results in default value with bits: 0 //! #[derive(Default)] //! struct Flags: u32 { //! const A = 0b00000001; //! const B = 0b00000010; //! const C = 0b00000100; //! } //! } //! //! fn main() { //! let derived_default: Flags = Default::default(); //! assert_eq!(derived_default.bits(), 0); //! } //! ``` //! //! If your default value is not equal to `0` you need to implement `Default` yourself: //! //! ``` //! #[macro_use] //! extern crate bitflags; //! //! bitflags! { //! struct Flags: u32 { //! const A = 0b00000001; //! const B = 0b00000010; //! const C = 0b00000100; //! } //! } //! //! // explicit `Default` implementation //! impl Default for Flags { //! fn default() -> Flags { //! Flags::A | Flags::C //! } //! } //! //! fn main() { //! let implemented_default: Flags = Default::default(); //! assert_eq!(implemented_default, (Flags::A | Flags::C)); //! } //! ``` //! //! # Zero Flags //! //! Flags with a value equal to zero will have some strange behavior that one should be aware of. //! //! ``` //! #[macro_use] //! extern crate bitflags; //! //! bitflags! { //! struct Flags: u32 { //! const NONE = 0b00000000; //! const SOME = 0b00000001; //! } //! } //! //! fn main() { //! let empty = Flags::empty(); //! let none = Flags::NONE; //! let some = Flags::SOME; //! //! // Zero flags are treated as always present //! assert!(empty.contains(Flags::NONE)); //! assert!(none.contains(Flags::NONE)); //! assert!(some.contains(Flags::NONE)); //! //! // Zero flags will be ignored when testing for emptiness //! assert!(none.is_empty()); //! } //! ``` #![no_std] #![doc(html_root_url = "https://docs.rs/bitflags/1.2.1")] #[cfg(test)] #[macro_use] extern crate std; // Re-export libcore using an alias so that the macros can work without // requiring `extern crate core` downstream. #[doc(hidden)] pub extern crate core as _core; /// The macro used to generate the flag structure. /// /// See the [crate level docs](../bitflags/index.html) for complete documentation. /// /// # Example /// /// ``` /// #[macro_use] /// extern crate bitflags; /// /// bitflags! { /// struct Flags: u32 { /// const A = 0b00000001; /// const B = 0b00000010; /// const C = 0b00000100; /// const ABC = Self::A.bits | Self::B.bits | Self::C.bits; /// } /// } /// /// fn main() { /// let e1 = Flags::A | Flags::C; /// let e2 = Flags::B | Flags::C; /// assert_eq!((e1 | e2), Flags::ABC); // union /// assert_eq!((e1 & e2), Flags::C); // intersection /// assert_eq!((e1 - e2), Flags::A); // set difference /// assert_eq!(!e2, Flags::A); // set complement /// } /// ``` /// /// The generated `struct`s can also be extended with type and trait /// implementations: /// /// ``` /// #[macro_use] /// extern crate bitflags; /// /// use std::fmt; /// /// bitflags! { /// struct Flags: u32 { /// const A = 0b00000001; /// const B = 0b00000010; /// } /// } /// /// impl Flags { /// pub fn clear(&mut self) { /// self.bits = 0; // The `bits` field can be accessed from within the /// // same module where the `bitflags!` macro was invoked. /// } /// } /// /// impl fmt::Display for Flags { /// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { /// write!(f, "hi!") /// } /// } /// /// fn main() { /// let mut flags = Flags::A | Flags::B; /// flags.clear(); /// assert!(flags.is_empty()); /// assert_eq!(format!("{}", flags), "hi!"); /// assert_eq!(format!("{:?}", Flags::A | Flags::B), "A | B"); /// assert_eq!(format!("{:?}", Flags::B), "B"); /// } /// ``` #[macro_export(local_inner_macros)] macro_rules! bitflags { ( $(#[$outer:meta])* pub struct $BitFlags:ident: $T:ty { $( $(#[$inner:ident $($args:tt)*])* const $Flag:ident = $value:expr; )+ } ) => { __bitflags! { $(#[$outer])* (pub) $BitFlags: $T { $( $(#[$inner $($args)*])* $Flag = $value; )+ } } }; ( $(#[$outer:meta])* struct $BitFlags:ident: $T:ty { $( $(#[$inner:ident $($args:tt)*])* const $Flag:ident = $value:expr; )+ } ) => { __bitflags! { $(#[$outer])* () $BitFlags: $T { $( $(#[$inner $($args)*])* $Flag = $value; )+ } } }; ( $(#[$outer:meta])* pub ($($vis:tt)+) struct $BitFlags:ident: $T:ty { $( $(#[$inner:ident $($args:tt)*])* const $Flag:ident = $value:expr; )+ } ) => { __bitflags! { $(#[$outer])* (pub ($($vis)+)) $BitFlags: $T { $( $(#[$inner $($args)*])* $Flag = $value; )+ } } }; } #[macro_export(local_inner_macros)] #[doc(hidden)] macro_rules! __bitflags { ( $(#[$outer:meta])* ($($vis:tt)*) $BitFlags:ident: $T:ty { $( $(#[$inner:ident $($args:tt)*])* $Flag:ident = $value:expr; )+ } ) => { $(#[$outer])* #[derive(Copy, PartialEq, Eq, Clone, PartialOrd, Ord, Hash)] $($vis)* struct $BitFlags { bits: $T, } __impl_bitflags! { $BitFlags: $T { $( $(#[$inner $($args)*])* $Flag = $value; )+ } } }; } #[macro_export(local_inner_macros)] #[doc(hidden)] #[cfg(bitflags_const_fn)] macro_rules! __fn_bitflags { ( $(# $attr_args:tt)* const fn $($item:tt)* ) => { $(# $attr_args)* const fn $($item)* }; ( $(# $attr_args:tt)* pub const fn $($item:tt)* ) => { $(# $attr_args)* pub const fn $($item)* }; ( $(# $attr_args:tt)* pub const unsafe fn $($item:tt)* ) => { $(# $attr_args)* pub const unsafe fn $($item)* }; } #[macro_export(local_inner_macros)] #[doc(hidden)] #[cfg(not(bitflags_const_fn))] macro_rules! __fn_bitflags { ( $(# $attr_args:tt)* const fn $($item:tt)* ) => { $(# $attr_args)* fn $($item)* }; ( $(# $attr_args:tt)* pub const fn $($item:tt)* ) => { $(# $attr_args)* pub fn $($item)* }; ( $(# $attr_args:tt)* pub const unsafe fn $($item:tt)* ) => { $(# $attr_args)* pub unsafe fn $($item)* }; } #[macro_export(local_inner_macros)] #[doc(hidden)] macro_rules! __impl_bitflags { ( $BitFlags:ident: $T:ty { $( $(#[$attr:ident $($args:tt)*])* $Flag:ident = $value:expr; )+ } ) => { impl $crate::_core::fmt::Debug for $BitFlags { fn fmt(&self, f: &mut $crate::_core::fmt::Formatter) -> $crate::_core::fmt::Result { // This convoluted approach is to handle #[cfg]-based flag // omission correctly. For example it needs to support: // // #[cfg(unix)] const A: Flag = /* ... */; // #[cfg(windows)] const B: Flag = /* ... */; // Unconditionally define a check for every flag, even disabled // ones. #[allow(non_snake_case)] trait __BitFlags { $( #[inline] fn $Flag(&self) -> bool { false } )+ } // Conditionally override the check for just those flags that // are not #[cfg]ed away. impl __BitFlags for $BitFlags { $( __impl_bitflags! { #[allow(deprecated)] #[inline] $(? #[$attr $($args)*])* fn $Flag(&self) -> bool { if Self::$Flag.bits == 0 && self.bits != 0 { false } else { self.bits & Self::$Flag.bits == Self::$Flag.bits } } } )+ } let mut first = true; $( if <$BitFlags as __BitFlags>::$Flag(self) { if !first { f.write_str(" | ")?; } first = false; f.write_str(__bitflags_stringify!($Flag))?; } )+ let extra_bits = self.bits & !$BitFlags::all().bits(); if extra_bits != 0 { if !first { f.write_str(" | ")?; } first = false; f.write_str("0x")?; $crate::_core::fmt::LowerHex::fmt(&extra_bits, f)?; } if first { f.write_str("(empty)")?; } Ok(()) } } impl $crate::_core::fmt::Binary for $BitFlags { fn fmt(&self, f: &mut $crate::_core::fmt::Formatter) -> $crate::_core::fmt::Result { $crate::_core::fmt::Binary::fmt(&self.bits, f) } } impl $crate::_core::fmt::Octal for $BitFlags { fn fmt(&self, f: &mut $crate::_core::fmt::Formatter) -> $crate::_core::fmt::Result { $crate::_core::fmt::Octal::fmt(&self.bits, f) } } impl $crate::_core::fmt::LowerHex for $BitFlags { fn fmt(&self, f: &mut $crate::_core::fmt::Formatter) -> $crate::_core::fmt::Result { $crate::_core::fmt::LowerHex::fmt(&self.bits, f) } } impl $crate::_core::fmt::UpperHex for $BitFlags { fn fmt(&self, f: &mut $crate::_core::fmt::Formatter) -> $crate::_core::fmt::Result { $crate::_core::fmt::UpperHex::fmt(&self.bits, f) } } #[allow(dead_code)] impl $BitFlags { $( $(#[$attr $($args)*])* pub const $Flag: $BitFlags = $BitFlags { bits: $value }; )+ __fn_bitflags! { /// Returns an empty set of flags #[inline] pub const fn empty() -> $BitFlags { $BitFlags { bits: 0 } } } __fn_bitflags! { /// Returns the set containing all flags. #[inline] pub const fn all() -> $BitFlags { // See `Debug::fmt` for why this approach is taken. #[allow(non_snake_case)] trait __BitFlags { $( const $Flag: $T = 0; )+ } impl __BitFlags for $BitFlags { $( __impl_bitflags! { #[allow(deprecated)] $(? #[$attr $($args)*])* const $Flag: $T = Self::$Flag.bits; } )+ } $BitFlags { bits: $(<$BitFlags as __BitFlags>::$Flag)|+ } } } __fn_bitflags! { /// Returns the raw value of the flags currently stored. #[inline] pub const fn bits(&self) -> $T { self.bits } } /// Convert from underlying bit representation, unless that /// representation contains bits that do not correspond to a flag. #[inline] pub fn from_bits(bits: $T) -> $crate::_core::option::Option<$BitFlags> { if (bits & !$BitFlags::all().bits()) == 0 { $crate::_core::option::Option::Some($BitFlags { bits }) } else { $crate::_core::option::Option::None } } __fn_bitflags! { /// Convert from underlying bit representation, dropping any bits /// that do not correspond to flags. #[inline] pub const fn from_bits_truncate(bits: $T) -> $BitFlags { $BitFlags { bits: bits & $BitFlags::all().bits } } } __fn_bitflags! { /// Convert from underlying bit representation, preserving all /// bits (even those not corresponding to a defined flag). #[inline] pub const unsafe fn from_bits_unchecked(bits: $T) -> $BitFlags { $BitFlags { bits } } } __fn_bitflags! { /// Returns `true` if no flags are currently stored. #[inline] pub const fn is_empty(&self) -> bool { self.bits() == $BitFlags::empty().bits() } } __fn_bitflags! { /// Returns `true` if all flags are currently set. #[inline] pub const fn is_all(&self) -> bool { self.bits == $BitFlags::all().bits } } __fn_bitflags! { /// Returns `true` if there are flags common to both `self` and `other`. #[inline] pub const fn intersects(&self, other: $BitFlags) -> bool { !$BitFlags{ bits: self.bits & other.bits}.is_empty() } } __fn_bitflags! { /// Returns `true` all of the flags in `other` are contained within `self`. #[inline] pub const fn contains(&self, other: $BitFlags) -> bool { (self.bits & other.bits) == other.bits } } /// Inserts the specified flags in-place. #[inline] pub fn insert(&mut self, other: $BitFlags) { self.bits |= other.bits; } /// Removes the specified flags in-place. #[inline] pub fn remove(&mut self, other: $BitFlags) { self.bits &= !other.bits; } /// Toggles the specified flags in-place. #[inline] pub fn toggle(&mut self, other: $BitFlags) { self.bits ^= other.bits; } /// Inserts or removes the specified flags depending on the passed value. #[inline] pub fn set(&mut self, other: $BitFlags, value: bool) { if value { self.insert(other); } else { self.remove(other); } } } impl $crate::_core::ops::BitOr for $BitFlags { type Output = $BitFlags; /// Returns the union of the two sets of flags. #[inline] fn bitor(self, other: $BitFlags) -> $BitFlags { $BitFlags { bits: self.bits | other.bits } } } impl $crate::_core::ops::BitOrAssign for $BitFlags { /// Adds the set of flags. #[inline] fn bitor_assign(&mut self, other: $BitFlags) { self.bits |= other.bits; } } impl $crate::_core::ops::BitXor for $BitFlags { type Output = $BitFlags; /// Returns the left flags, but with all the right flags toggled. #[inline] fn bitxor(self, other: $BitFlags) -> $BitFlags { $BitFlags { bits: self.bits ^ other.bits } } } impl $crate::_core::ops::BitXorAssign for $BitFlags { /// Toggles the set of flags. #[inline] fn bitxor_assign(&mut self, other: $BitFlags) { self.bits ^= other.bits; } } impl $crate::_core::ops::BitAnd for $BitFlags { type Output = $BitFlags; /// Returns the intersection between the two sets of flags. #[inline] fn bitand(self, other: $BitFlags) -> $BitFlags { $BitFlags { bits: self.bits & other.bits } } } impl $crate::_core::ops::BitAndAssign for $BitFlags { /// Disables all flags disabled in the set. #[inline] fn bitand_assign(&mut self, other: $BitFlags) { self.bits &= other.bits; } } impl $crate::_core::ops::Sub for $BitFlags { type Output = $BitFlags; /// Returns the set difference of the two sets of flags. #[inline] fn sub(self, other: $BitFlags) -> $BitFlags { $BitFlags { bits: self.bits & !other.bits } } } impl $crate::_core::ops::SubAssign for $BitFlags { /// Disables all flags enabled in the set. #[inline] fn sub_assign(&mut self, other: $BitFlags) { self.bits &= !other.bits; } } impl $crate::_core::ops::Not for $BitFlags { type Output = $BitFlags; /// Returns the complement of this set of flags. #[inline] fn not(self) -> $BitFlags { $BitFlags { bits: !self.bits } & $BitFlags::all() } } impl $crate::_core::iter::Extend<$BitFlags> for $BitFlags { fn extend>(&mut self, iterator: T) { for item in iterator { self.insert(item) } } } impl $crate::_core::iter::FromIterator<$BitFlags> for $BitFlags { fn from_iter>(iterator: T) -> $BitFlags { let mut result = Self::empty(); result.extend(iterator); result } } }; // Every attribute that the user writes on a const is applied to the // corresponding const that we generate, but within the implementation of // Debug and all() we want to ignore everything but #[cfg] attributes. In // particular, including a #[deprecated] attribute on those items would fail // to compile. // https://github.com/bitflags/bitflags/issues/109 // // Input: // // ? #[cfg(feature = "advanced")] // ? #[deprecated(note = "Use somthing else.")] // ? #[doc = r"High quality documentation."] // fn f() -> i32 { /* ... */ } // // Output: // // #[cfg(feature = "advanced")] // fn f() -> i32 { /* ... */ } ( $(#[$filtered:meta])* ? #[cfg $($cfgargs:tt)*] $(? #[$rest:ident $($restargs:tt)*])* fn $($item:tt)* ) => { __impl_bitflags! { $(#[$filtered])* #[cfg $($cfgargs)*] $(? #[$rest $($restargs)*])* fn $($item)* } }; ( $(#[$filtered:meta])* // $next != `cfg` ? #[$next:ident $($nextargs:tt)*] $(? #[$rest:ident $($restargs:tt)*])* fn $($item:tt)* ) => { __impl_bitflags! { $(#[$filtered])* // $next filtered out $(? #[$rest $($restargs)*])* fn $($item)* } }; ( $(#[$filtered:meta])* fn $($item:tt)* ) => { $(#[$filtered])* fn $($item)* }; // Every attribute that the user writes on a const is applied to the // corresponding const that we generate, but within the implementation of // Debug and all() we want to ignore everything but #[cfg] attributes. In // particular, including a #[deprecated] attribute on those items would fail // to compile. // https://github.com/bitflags/bitflags/issues/109 // // const version // // Input: // // ? #[cfg(feature = "advanced")] // ? #[deprecated(note = "Use somthing else.")] // ? #[doc = r"High quality documentation."] // const f: i32 { /* ... */ } // // Output: // // #[cfg(feature = "advanced")] // const f: i32 { /* ... */ } ( $(#[$filtered:meta])* ? #[cfg $($cfgargs:tt)*] $(? #[$rest:ident $($restargs:tt)*])* const $($item:tt)* ) => { __impl_bitflags! { $(#[$filtered])* #[cfg $($cfgargs)*] $(? #[$rest $($restargs)*])* const $($item)* } }; ( $(#[$filtered:meta])* // $next != `cfg` ? #[$next:ident $($nextargs:tt)*] $(? #[$rest:ident $($restargs:tt)*])* const $($item:tt)* ) => { __impl_bitflags! { $(#[$filtered])* // $next filtered out $(? #[$rest $($restargs)*])* const $($item)* } }; ( $(#[$filtered:meta])* const $($item:tt)* ) => { $(#[$filtered])* const $($item)* }; } // Same as std::stringify but callable from __impl_bitflags, which needs to use // local_inner_macros so can only directly call macros from this crate. #[macro_export] #[doc(hidden)] macro_rules! __bitflags_stringify { ($s:ident) => { stringify!($s) }; } #[cfg(feature = "example_generated")] pub mod example_generated; #[cfg(test)] mod tests { use std::collections::hash_map::DefaultHasher; use std::hash::{Hash, Hasher}; bitflags! { #[doc = "> The first principle is that you must not fool yourself — and"] #[doc = "> you are the easiest person to fool."] #[doc = "> "] #[doc = "> - Richard Feynman"] struct Flags: u32 { const A = 0b00000001; #[doc = " macros are way better at generating code than trans is"] const B = 0b00000010; const C = 0b00000100; #[doc = "* cmr bed"] #[doc = "* strcat table"] #[doc = " wait what?"] const ABC = Self::A.bits | Self::B.bits | Self::C.bits; } } bitflags! { struct _CfgFlags: u32 { #[cfg(unix)] const _CFG_A = 0b01; #[cfg(windows)] const _CFG_B = 0b01; #[cfg(unix)] const _CFG_C = Self::_CFG_A.bits | 0b10; } } bitflags! { struct AnotherSetOfFlags: i8 { const ANOTHER_FLAG = -1_i8; } } bitflags! { struct LongFlags: u32 { const LONG_A = 0b1111111111111111; } } #[test] fn test_bits() { assert_eq!(Flags::empty().bits(), 0b00000000); assert_eq!(Flags::A.bits(), 0b00000001); assert_eq!(Flags::ABC.bits(), 0b00000111); assert_eq!(AnotherSetOfFlags::empty().bits(), 0b00); assert_eq!(AnotherSetOfFlags::ANOTHER_FLAG.bits(), !0_i8); } #[test] fn test_from_bits() { assert_eq!(Flags::from_bits(0), Some(Flags::empty())); assert_eq!(Flags::from_bits(0b1), Some(Flags::A)); assert_eq!(Flags::from_bits(0b10), Some(Flags::B)); assert_eq!(Flags::from_bits(0b11), Some(Flags::A | Flags::B)); assert_eq!(Flags::from_bits(0b1000), None); assert_eq!( AnotherSetOfFlags::from_bits(!0_i8), Some(AnotherSetOfFlags::ANOTHER_FLAG) ); } #[test] fn test_from_bits_truncate() { assert_eq!(Flags::from_bits_truncate(0), Flags::empty()); assert_eq!(Flags::from_bits_truncate(0b1), Flags::A); assert_eq!(Flags::from_bits_truncate(0b10), Flags::B); assert_eq!(Flags::from_bits_truncate(0b11), (Flags::A | Flags::B)); assert_eq!(Flags::from_bits_truncate(0b1000), Flags::empty()); assert_eq!(Flags::from_bits_truncate(0b1001), Flags::A); assert_eq!( AnotherSetOfFlags::from_bits_truncate(0_i8), AnotherSetOfFlags::empty() ); } #[test] fn test_from_bits_unchecked() { let extra = unsafe { Flags::from_bits_unchecked(0b1000) }; assert_eq!(unsafe { Flags::from_bits_unchecked(0) }, Flags::empty()); assert_eq!(unsafe { Flags::from_bits_unchecked(0b1) }, Flags::A); assert_eq!(unsafe { Flags::from_bits_unchecked(0b10) }, Flags::B); assert_eq!(unsafe { Flags::from_bits_unchecked(0b11) }, (Flags::A | Flags::B)); assert_eq!(unsafe { Flags::from_bits_unchecked(0b1000) }, (extra | Flags::empty())); assert_eq!(unsafe { Flags::from_bits_unchecked(0b1001) }, (extra | Flags::A)); } #[test] fn test_is_empty() { assert!(Flags::empty().is_empty()); assert!(!Flags::A.is_empty()); assert!(!Flags::ABC.is_empty()); assert!(!AnotherSetOfFlags::ANOTHER_FLAG.is_empty()); } #[test] fn test_is_all() { assert!(Flags::all().is_all()); assert!(!Flags::A.is_all()); assert!(Flags::ABC.is_all()); assert!(AnotherSetOfFlags::ANOTHER_FLAG.is_all()); } #[test] fn test_two_empties_do_not_intersect() { let e1 = Flags::empty(); let e2 = Flags::empty(); assert!(!e1.intersects(e2)); assert!(AnotherSetOfFlags::ANOTHER_FLAG.intersects(AnotherSetOfFlags::ANOTHER_FLAG)); } #[test] fn test_empty_does_not_intersect_with_full() { let e1 = Flags::empty(); let e2 = Flags::ABC; assert!(!e1.intersects(e2)); } #[test] fn test_disjoint_intersects() { let e1 = Flags::A; let e2 = Flags::B; assert!(!e1.intersects(e2)); } #[test] fn test_overlapping_intersects() { let e1 = Flags::A; let e2 = Flags::A | Flags::B; assert!(e1.intersects(e2)); } #[test] fn test_contains() { let e1 = Flags::A; let e2 = Flags::A | Flags::B; assert!(!e1.contains(e2)); assert!(e2.contains(e1)); assert!(Flags::ABC.contains(e2)); assert!(AnotherSetOfFlags::ANOTHER_FLAG.contains(AnotherSetOfFlags::ANOTHER_FLAG)); } #[test] fn test_insert() { let mut e1 = Flags::A; let e2 = Flags::A | Flags::B; e1.insert(e2); assert_eq!(e1, e2); let mut e3 = AnotherSetOfFlags::empty(); e3.insert(AnotherSetOfFlags::ANOTHER_FLAG); assert_eq!(e3, AnotherSetOfFlags::ANOTHER_FLAG); } #[test] fn test_remove() { let mut e1 = Flags::A | Flags::B; let e2 = Flags::A | Flags::C; e1.remove(e2); assert_eq!(e1, Flags::B); let mut e3 = AnotherSetOfFlags::ANOTHER_FLAG; e3.remove(AnotherSetOfFlags::ANOTHER_FLAG); assert_eq!(e3, AnotherSetOfFlags::empty()); } #[test] fn test_operators() { let e1 = Flags::A | Flags::C; let e2 = Flags::B | Flags::C; assert_eq!((e1 | e2), Flags::ABC); // union assert_eq!((e1 & e2), Flags::C); // intersection assert_eq!((e1 - e2), Flags::A); // set difference assert_eq!(!e2, Flags::A); // set complement assert_eq!(e1 ^ e2, Flags::A | Flags::B); // toggle let mut e3 = e1; e3.toggle(e2); assert_eq!(e3, Flags::A | Flags::B); let mut m4 = AnotherSetOfFlags::empty(); m4.toggle(AnotherSetOfFlags::empty()); assert_eq!(m4, AnotherSetOfFlags::empty()); } #[test] fn test_operators_unchecked() { let extra = unsafe { Flags::from_bits_unchecked(0b1000) }; let e1 = Flags::A | Flags::C | extra; let e2 = Flags::B | Flags::C; assert_eq!((e1 | e2), (Flags::ABC | extra)); // union assert_eq!((e1 & e2), Flags::C); // intersection assert_eq!((e1 - e2), (Flags::A | extra)); // set difference assert_eq!(!e2, Flags::A); // set complement assert_eq!(!e1, Flags::B); // set complement assert_eq!(e1 ^ e2, Flags::A | Flags::B | extra); // toggle let mut e3 = e1; e3.toggle(e2); assert_eq!(e3, Flags::A | Flags::B | extra); } #[test] fn test_set() { let mut e1 = Flags::A | Flags::C; e1.set(Flags::B, true); e1.set(Flags::C, false); assert_eq!(e1, Flags::A | Flags::B); } #[test] fn test_assignment_operators() { let mut m1 = Flags::empty(); let e1 = Flags::A | Flags::C; // union m1 |= Flags::A; assert_eq!(m1, Flags::A); // intersection m1 &= e1; assert_eq!(m1, Flags::A); // set difference m1 -= m1; assert_eq!(m1, Flags::empty()); // toggle m1 ^= e1; assert_eq!(m1, e1); } #[cfg(bitflags_const_fn)] #[test] fn test_const_fn() { const _M1: Flags = Flags::empty(); const M2: Flags = Flags::A; assert_eq!(M2, Flags::A); const M3: Flags = Flags::C; assert_eq!(M3, Flags::C); } #[test] fn test_extend() { let mut flags; flags = Flags::empty(); flags.extend([].iter().cloned()); assert_eq!(flags, Flags::empty()); flags = Flags::empty(); flags.extend([Flags::A, Flags::B].iter().cloned()); assert_eq!(flags, Flags::A | Flags::B); flags = Flags::A; flags.extend([Flags::A, Flags::B].iter().cloned()); assert_eq!(flags, Flags::A | Flags::B); flags = Flags::B; flags.extend([Flags::A, Flags::ABC].iter().cloned()); assert_eq!(flags, Flags::ABC); } #[test] fn test_from_iterator() { assert_eq!([].iter().cloned().collect::(), Flags::empty()); assert_eq!( [Flags::A, Flags::B].iter().cloned().collect::(), Flags::A | Flags::B ); assert_eq!( [Flags::A, Flags::ABC].iter().cloned().collect::(), Flags::ABC ); } #[test] fn test_lt() { let mut a = Flags::empty(); let mut b = Flags::empty(); assert!(!(a < b) && !(b < a)); b = Flags::B; assert!(a < b); a = Flags::C; assert!(!(a < b) && b < a); b = Flags::C | Flags::B; assert!(a < b); } #[test] fn test_ord() { let mut a = Flags::empty(); let mut b = Flags::empty(); assert!(a <= b && a >= b); a = Flags::A; assert!(a > b && a >= b); assert!(b < a && b <= a); b = Flags::B; assert!(b > a && b >= a); assert!(a < b && a <= b); } fn hash(t: &T) -> u64 { let mut s = DefaultHasher::new(); t.hash(&mut s); s.finish() } #[test] fn test_hash() { let mut x = Flags::empty(); let mut y = Flags::empty(); assert_eq!(hash(&x), hash(&y)); x = Flags::all(); y = Flags::ABC; assert_eq!(hash(&x), hash(&y)); } #[test] fn test_debug() { assert_eq!(format!("{:?}", Flags::A | Flags::B), "A | B"); assert_eq!(format!("{:?}", Flags::empty()), "(empty)"); assert_eq!(format!("{:?}", Flags::ABC), "A | B | C | ABC"); let extra = unsafe { Flags::from_bits_unchecked(0xb8) }; assert_eq!(format!("{:?}", extra), "0xb8"); assert_eq!(format!("{:?}", Flags::A | extra), "A | 0xb8"); assert_eq!(format!("{:?}", Flags::ABC | extra), "A | B | C | ABC | 0xb8"); } #[test] fn test_binary() { assert_eq!(format!("{:b}", Flags::ABC), "111"); assert_eq!(format!("{:#b}", Flags::ABC), "0b111"); let extra = unsafe { Flags::from_bits_unchecked(0b1010000) }; assert_eq!(format!("{:b}", Flags::ABC | extra), "1010111"); assert_eq!(format!("{:#b}", Flags::ABC | extra), "0b1010111"); } #[test] fn test_octal() { assert_eq!(format!("{:o}", LongFlags::LONG_A), "177777"); assert_eq!(format!("{:#o}", LongFlags::LONG_A), "0o177777"); let extra = unsafe { LongFlags::from_bits_unchecked(0o5000000) }; assert_eq!(format!("{:o}", LongFlags::LONG_A | extra), "5177777"); assert_eq!(format!("{:#o}", LongFlags::LONG_A | extra), "0o5177777"); } #[test] fn test_lowerhex() { assert_eq!(format!("{:x}", LongFlags::LONG_A), "ffff"); assert_eq!(format!("{:#x}", LongFlags::LONG_A), "0xffff"); let extra = unsafe { LongFlags::from_bits_unchecked(0xe00000) }; assert_eq!(format!("{:x}", LongFlags::LONG_A | extra), "e0ffff"); assert_eq!(format!("{:#x}", LongFlags::LONG_A | extra), "0xe0ffff"); } #[test] fn test_upperhex() { assert_eq!(format!("{:X}", LongFlags::LONG_A), "FFFF"); assert_eq!(format!("{:#X}", LongFlags::LONG_A), "0xFFFF"); let extra = unsafe { LongFlags::from_bits_unchecked(0xe00000) }; assert_eq!(format!("{:X}", LongFlags::LONG_A | extra), "E0FFFF"); assert_eq!(format!("{:#X}", LongFlags::LONG_A | extra), "0xE0FFFF"); } mod submodule { bitflags! { pub struct PublicFlags: i8 { const X = 0; } } bitflags! { struct PrivateFlags: i8 { const Y = 0; } } #[test] fn test_private() { let _ = PrivateFlags::Y; } } #[test] fn test_public() { let _ = submodule::PublicFlags::X; } mod t1 { mod foo { pub type Bar = i32; } bitflags! { /// baz struct Flags: foo::Bar { const A = 0b00000001; #[cfg(foo)] const B = 0b00000010; #[cfg(foo)] const C = 0b00000010; } } } #[test] fn test_in_function() { bitflags! { struct Flags: u8 { const A = 1; #[cfg(any())] // false const B = 2; } } assert_eq!(Flags::all(), Flags::A); assert_eq!(format!("{:?}", Flags::A), "A"); } #[test] fn test_deprecated() { bitflags! { pub struct TestFlags: u32 { #[deprecated(note = "Use something else.")] const ONE = 1; } } } #[test] fn test_pub_crate() { mod module { bitflags! { pub (crate) struct Test: u8 { const FOO = 1; } } } assert_eq!(module::Test::FOO.bits(), 1); } #[test] fn test_pub_in_module() { mod module { mod submodule { bitflags! { // `pub (in super)` means only the module `module` will // be able to access this. pub (in super) struct Test: u8 { const FOO = 1; } } } mod test { // Note: due to `pub (in super)`, // this cannot be accessed directly by the testing code. pub(super) fn value() -> u8 { super::submodule::Test::FOO.bits() } } pub fn value() -> u8 { test::value() } } assert_eq!(module::value(), 1) } #[test] fn test_zero_value_flags() { bitflags! { struct Flags: u32 { const NONE = 0b0; const SOME = 0b1; } } assert!(Flags::empty().contains(Flags::NONE)); assert!(Flags::SOME.contains(Flags::NONE)); assert!(Flags::NONE.is_empty()); assert_eq!(format!("{:?}", Flags::empty()), "NONE"); assert_eq!(format!("{:?}", Flags::SOME), "SOME"); } }