From d0d9683df8398696147e7ee1fcffb2e4e957008c Mon Sep 17 00:00:00 2001 From: Daniel Mueller Date: Sat, 4 Apr 2020 14:39:19 -0700 Subject: Remove vendored dependencies While it appears that by now we actually can get successful builds without Cargo insisting on Internet access by virtue of using the --frozen flag, maintaining vendored dependencies is somewhat of a pain point. This state will also get worse with upcoming changes that replace argparse in favor of structopt and pull in a slew of new dependencies by doing so. Then there is also the repository structure aspect, which is non-standard due to the way we vendor dependencies and a potential source of confusion. In order to fix these problems, this change removes all the vendored dependencies we have. Delete subrepo argparse/:argparse Delete subrepo base32/:base32 Delete subrepo cc/:cc Delete subrepo cfg-if/:cfg-if Delete subrepo getrandom/:getrandom Delete subrepo lazy-static/:lazy-static Delete subrepo libc/:libc Delete subrepo nitrokey-sys/:nitrokey-sys Delete subrepo nitrokey/:nitrokey Delete subrepo rand/:rand --- rand/src/distributions/bernoulli.rs | 166 ------------------------------------ 1 file changed, 166 deletions(-) delete mode 100644 rand/src/distributions/bernoulli.rs (limited to 'rand/src/distributions/bernoulli.rs') diff --git a/rand/src/distributions/bernoulli.rs b/rand/src/distributions/bernoulli.rs deleted file mode 100644 index eadd056..0000000 --- a/rand/src/distributions/bernoulli.rs +++ /dev/null @@ -1,166 +0,0 @@ -// Copyright 2018 Developers of the Rand project. -// -// Licensed under the Apache License, Version 2.0 or the MIT license -// , at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! The Bernoulli distribution. - -use crate::Rng; -use crate::distributions::Distribution; - -/// The Bernoulli distribution. -/// -/// This is a special case of the Binomial distribution where `n = 1`. -/// -/// # Example -/// -/// ```rust -/// use rand::distributions::{Bernoulli, Distribution}; -/// -/// let d = Bernoulli::new(0.3).unwrap(); -/// let v = d.sample(&mut rand::thread_rng()); -/// println!("{} is from a Bernoulli distribution", v); -/// ``` -/// -/// # Precision -/// -/// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`), -/// so only probabilities that are multiples of 2-64 can be -/// represented. -#[derive(Clone, Copy, Debug)] -pub struct Bernoulli { - /// Probability of success, relative to the maximal integer. - p_int: u64, -} - -// To sample from the Bernoulli distribution we use a method that compares a -// random `u64` value `v < (p * 2^64)`. -// -// If `p == 1.0`, the integer `v` to compare against can not represented as a -// `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64). -// Note that value of `p < 1.0` can never result in `u64::MAX`, because an -// `f64` only has 53 bits of precision, and the next largest value of `p` will -// result in `2^64 - 2048`. -// -// Also there is a 100% theoretical concern: if someone consistenly wants to -// generate `true` using the Bernoulli distribution (i.e. by using a probability -// of `1.0`), just using `u64::MAX` is not enough. On average it would return -// false once every 2^64 iterations. Some people apparently care about this -// case. -// -// That is why we special-case `u64::MAX` to always return `true`, without using -// the RNG, and pay the performance price for all uses that *are* reasonable. -// Luckily, if `new()` and `sample` are close, the compiler can optimize out the -// extra check. -const ALWAYS_TRUE: u64 = ::core::u64::MAX; - -// This is just `2.0.powi(64)`, but written this way because it is not available -// in `no_std` mode. -const SCALE: f64 = 2.0 * (1u64 << 63) as f64; - -/// Error type returned from `Bernoulli::new`. -#[derive(Clone, Copy, Debug, PartialEq, Eq)] -pub enum BernoulliError { - /// `p < 0` or `p > 1`. - InvalidProbability, -} - -impl Bernoulli { - /// Construct a new `Bernoulli` with the given probability of success `p`. - /// - /// # Precision - /// - /// For `p = 1.0`, the resulting distribution will always generate true. - /// For `p = 0.0`, the resulting distribution will always generate false. - /// - /// This method is accurate for any input `p` in the range `[0, 1]` which is - /// a multiple of 2-64. (Note that not all multiples of - /// 2-64 in `[0, 1]` can be represented as a `f64`.) - #[inline] - pub fn new(p: f64) -> Result { - if p < 0.0 || p >= 1.0 { - if p == 1.0 { return Ok(Bernoulli { p_int: ALWAYS_TRUE }) } - return Err(BernoulliError::InvalidProbability); - } - Ok(Bernoulli { p_int: (p * SCALE) as u64 }) - } - - /// Construct a new `Bernoulli` with the probability of success of - /// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return - /// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`. - /// - /// If `numerator == denominator` then the returned `Bernoulli` will always - /// return `true`. If `numerator == 0` it will always return `false`. - #[inline] - pub fn from_ratio(numerator: u32, denominator: u32) -> Result { - if numerator > denominator { - return Err(BernoulliError::InvalidProbability); - } - if numerator == denominator { - return Ok(Bernoulli { p_int: ALWAYS_TRUE }) - } - let p_int = ((f64::from(numerator) / f64::from(denominator)) * SCALE) as u64; - Ok(Bernoulli { p_int }) - } -} - -impl Distribution for Bernoulli { - #[inline] - fn sample(&self, rng: &mut R) -> bool { - // Make sure to always return true for p = 1.0. - if self.p_int == ALWAYS_TRUE { return true; } - let v: u64 = rng.gen(); - v < self.p_int - } -} - -#[cfg(test)] -mod test { - use crate::Rng; - use crate::distributions::Distribution; - use super::Bernoulli; - - #[test] - fn test_trivial() { - let mut r = crate::test::rng(1); - let always_false = Bernoulli::new(0.0).unwrap(); - let always_true = Bernoulli::new(1.0).unwrap(); - for _ in 0..5 { - assert_eq!(r.sample::(&always_false), false); - assert_eq!(r.sample::(&always_true), true); - assert_eq!(Distribution::::sample(&always_false, &mut r), false); - assert_eq!(Distribution::::sample(&always_true, &mut r), true); - } - } - - #[test] - #[cfg(not(miri))] // Miri is too slow - fn test_average() { - const P: f64 = 0.3; - const NUM: u32 = 3; - const DENOM: u32 = 10; - let d1 = Bernoulli::new(P).unwrap(); - let d2 = Bernoulli::from_ratio(NUM, DENOM).unwrap(); - const N: u32 = 100_000; - - let mut sum1: u32 = 0; - let mut sum2: u32 = 0; - let mut rng = crate::test::rng(2); - for _ in 0..N { - if d1.sample(&mut rng) { - sum1 += 1; - } - if d2.sample(&mut rng) { - sum2 += 1; - } - } - let avg1 = (sum1 as f64) / (N as f64); - assert!((avg1 - P).abs() < 5e-3); - - let avg2 = (sum2 as f64) / (N as f64); - assert!((avg2 - (NUM as f64)/(DENOM as f64)).abs() < 5e-3); - } -} -- cgit v1.2.3