diff options
Diffstat (limited to 'rand/src/distributions/mod.rs')
-rw-r--r-- | rand/src/distributions/mod.rs | 520 |
1 files changed, 140 insertions, 380 deletions
diff --git a/rand/src/distributions/mod.rs b/rand/src/distributions/mod.rs index 5e879cb..02ece6f 100644 --- a/rand/src/distributions/mod.rs +++ b/rand/src/distributions/mod.rs @@ -7,12 +7,12 @@ // option. This file may not be copied, modified, or distributed // except according to those terms. -//! Generating random samples from probability distributions. +//! Generating random samples from probability distributions //! //! This module is the home of the [`Distribution`] trait and several of its //! implementations. It is the workhorse behind some of the convenient -//! functionality of the [`Rng`] trait, including [`gen`], [`gen_range`] and -//! of course [`sample`]. +//! functionality of the [`Rng`] trait, e.g. [`Rng::gen`], [`Rng::gen_range`] and +//! of course [`Rng::sample`]. //! //! Abstractly, a [probability distribution] describes the probability of //! occurance of each value in its sample space. @@ -40,8 +40,14 @@ //! possible to generate type `T` with [`Rng::gen()`], and by extension also //! with the [`random()`] function. //! +//! ## Random characters +//! +//! [`Alphanumeric`] is a simple distribution to sample random letters and +//! numbers of the `char` type; in contrast [`Standard`] may sample any valid +//! `char`. +//! //! -//! # Distribution to sample from a `Uniform` range +//! # Uniform numeric ranges //! //! The [`Uniform`] distribution is more flexible than [`Standard`], but also //! more specialised: it supports fewer target types, but allows the sample @@ -56,158 +62,84 @@ //! //! User types `T` may also implement `Distribution<T>` for [`Uniform`], //! although this is less straightforward than for [`Standard`] (see the -//! documentation in the [`uniform` module]. Doing so enables generation of +//! documentation in the [`uniform`] module. Doing so enables generation of //! values of type `T` with [`Rng::gen_range`]. //! -//! -//! # Other distributions +//! ## Open and half-open ranges //! //! There are surprisingly many ways to uniformly generate random floats. A //! range between 0 and 1 is standard, but the exact bounds (open vs closed) //! and accuracy differ. In addition to the [`Standard`] distribution Rand offers -//! [`Open01`] and [`OpenClosed01`]. See [Floating point implementation] for -//! more details. -//! -//! [`Alphanumeric`] is a simple distribution to sample random letters and -//! numbers of the `char` type; in contrast [`Standard`] may sample any valid -//! `char`. -//! -//! [`WeightedIndex`] can be used to do weighted sampling from a set of items, -//! such as from an array. -//! -//! # Non-uniform probability distributions -//! -//! Rand currently provides the following probability distributions: -//! -//! - Related to real-valued quantities that grow linearly -//! (e.g. errors, offsets): -//! - [`Normal`] distribution, and [`StandardNormal`] as a primitive -//! - [`Cauchy`] distribution -//! - Related to Bernoulli trials (yes/no events, with a given probability): -//! - [`Binomial`] distribution -//! - [`Bernoulli`] distribution, similar to [`Rng::gen_bool`]. -//! - Related to positive real-valued quantities that grow exponentially -//! (e.g. prices, incomes, populations): -//! - [`LogNormal`] distribution -//! - Related to the occurrence of independent events at a given rate: -//! - [`Pareto`] distribution -//! - [`Poisson`] distribution -//! - [`Exp`]onential distribution, and [`Exp1`] as a primitive -//! - [`Weibull`] distribution -//! - Gamma and derived distributions: -//! - [`Gamma`] distribution -//! - [`ChiSquared`] distribution -//! - [`StudentT`] distribution -//! - [`FisherF`] distribution -//! - Triangular distribution: -//! - [`Beta`] distribution -//! - [`Triangular`] distribution -//! - Multivariate probability distributions -//! - [`Dirichlet`] distribution -//! - [`UnitSphereSurface`] distribution -//! - [`UnitCircle`] distribution +//! [`Open01`] and [`OpenClosed01`]. See "Floating point implementation" section of +//! [`Standard`] documentation for more details. //! -//! # Examples +//! # Non-uniform sampling //! -//! Sampling from a distribution: +//! Sampling a simple true/false outcome with a given probability has a name: +//! the [`Bernoulli`] distribution (this is used by [`Rng::gen_bool`]). //! -//! ``` -//! use rand::{thread_rng, Rng}; -//! use rand::distributions::Exp; +//! For weighted sampling from a sequence of discrete values, use the +//! [`weighted`] module. //! -//! let exp = Exp::new(2.0); -//! let v = thread_rng().sample(exp); -//! println!("{} is from an Exp(2) distribution", v); -//! ``` -//! -//! Implementing the [`Standard`] distribution for a user type: -//! -//! ``` -//! # #![allow(dead_code)] -//! use rand::Rng; -//! use rand::distributions::{Distribution, Standard}; -//! -//! struct MyF32 { -//! x: f32, -//! } -//! -//! impl Distribution<MyF32> for Standard { -//! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 { -//! MyF32 { x: rng.gen() } -//! } -//! } -//! ``` +//! This crate no longer includes other non-uniform distributions; instead +//! it is recommended that you use either [`rand_distr`] or [`statrs`]. //! //! //! [probability distribution]: https://en.wikipedia.org/wiki/Probability_distribution -//! [`Distribution`]: trait.Distribution.html -//! [`gen_range`]: ../trait.Rng.html#method.gen_range -//! [`gen`]: ../trait.Rng.html#method.gen -//! [`sample`]: ../trait.Rng.html#method.sample -//! [`new_inclusive`]: struct.Uniform.html#method.new_inclusive -//! [`random()`]: ../fn.random.html -//! [`Rng::gen_bool`]: ../trait.Rng.html#method.gen_bool -//! [`Rng::gen_range`]: ../trait.Rng.html#method.gen_range -//! [`Rng::gen()`]: ../trait.Rng.html#method.gen -//! [`Rng`]: ../trait.Rng.html -//! [`uniform` module]: uniform/index.html -//! [Floating point implementation]: struct.Standard.html#floating-point-implementation -// distributions -//! [`Alphanumeric`]: struct.Alphanumeric.html -//! [`Bernoulli`]: struct.Bernoulli.html -//! [`Beta`]: struct.Beta.html -//! [`Binomial`]: struct.Binomial.html -//! [`Cauchy`]: struct.Cauchy.html -//! [`ChiSquared`]: struct.ChiSquared.html -//! [`Dirichlet`]: struct.Dirichlet.html -//! [`Exp`]: struct.Exp.html -//! [`Exp1`]: struct.Exp1.html -//! [`FisherF`]: struct.FisherF.html -//! [`Gamma`]: struct.Gamma.html -//! [`LogNormal`]: struct.LogNormal.html -//! [`Normal`]: struct.Normal.html -//! [`Open01`]: struct.Open01.html -//! [`OpenClosed01`]: struct.OpenClosed01.html -//! [`Pareto`]: struct.Pareto.html -//! [`Poisson`]: struct.Poisson.html -//! [`Standard`]: struct.Standard.html -//! [`StandardNormal`]: struct.StandardNormal.html -//! [`StudentT`]: struct.StudentT.html -//! [`Triangular`]: struct.Triangular.html -//! [`Uniform`]: struct.Uniform.html -//! [`Uniform::new`]: struct.Uniform.html#method.new -//! [`Uniform::new_inclusive`]: struct.Uniform.html#method.new_inclusive -//! [`UnitSphereSurface`]: struct.UnitSphereSurface.html -//! [`UnitCircle`]: struct.UnitCircle.html -//! [`Weibull`]: struct.Weibull.html -//! [`WeightedIndex`]: struct.WeightedIndex.html +//! [`rand_distr`]: https://crates.io/crates/rand_distr +//! [`statrs`]: https://crates.io/crates/statrs + +//! [`Alphanumeric`]: distributions::Alphanumeric +//! [`Bernoulli`]: distributions::Bernoulli +//! [`Open01`]: distributions::Open01 +//! [`OpenClosed01`]: distributions::OpenClosed01 +//! [`Standard`]: distributions::Standard +//! [`Uniform`]: distributions::Uniform +//! [`Uniform::new`]: distributions::Uniform::new +//! [`Uniform::new_inclusive`]: distributions::Uniform::new_inclusive +//! [`weighted`]: distributions::weighted +//! [`rand_distr`]: https://crates.io/crates/rand_distr +//! [`statrs`]: https://crates.io/crates/statrs -#[cfg(any(rustc_1_26, features="nightly"))] use core::iter; -use Rng; +use crate::Rng; pub use self::other::Alphanumeric; #[doc(inline)] pub use self::uniform::Uniform; pub use self::float::{OpenClosed01, Open01}; -pub use self::bernoulli::Bernoulli; +pub use self::bernoulli::{Bernoulli, BernoulliError}; #[cfg(feature="alloc")] pub use self::weighted::{WeightedIndex, WeightedError}; + +// The following are all deprecated after being moved to rand_distr +#[allow(deprecated)] #[cfg(feature="std")] pub use self::unit_sphere::UnitSphereSurface; +#[allow(deprecated)] #[cfg(feature="std")] pub use self::unit_circle::UnitCircle; +#[allow(deprecated)] #[cfg(feature="std")] pub use self::gamma::{Gamma, ChiSquared, FisherF, StudentT, Beta}; +#[allow(deprecated)] #[cfg(feature="std")] pub use self::normal::{Normal, LogNormal, StandardNormal}; +#[allow(deprecated)] #[cfg(feature="std")] pub use self::exponential::{Exp, Exp1}; +#[allow(deprecated)] #[cfg(feature="std")] pub use self::pareto::Pareto; +#[allow(deprecated)] #[cfg(feature="std")] pub use self::poisson::Poisson; +#[allow(deprecated)] #[cfg(feature="std")] pub use self::binomial::Binomial; +#[allow(deprecated)] #[cfg(feature="std")] pub use self::cauchy::Cauchy; +#[allow(deprecated)] #[cfg(feature="std")] pub use self::dirichlet::Dirichlet; +#[allow(deprecated)] #[cfg(feature="std")] pub use self::triangular::Triangular; +#[allow(deprecated)] #[cfg(feature="std")] pub use self::weibull::Weibull; pub mod uniform; mod bernoulli; -#[cfg(feature="alloc")] mod weighted; +#[cfg(feature="alloc")] pub mod weighted; #[cfg(feature="std")] mod unit_sphere; #[cfg(feature="std")] mod unit_circle; #[cfg(feature="std")] mod gamma; @@ -222,6 +154,9 @@ mod bernoulli; #[cfg(feature="std")] mod weibull; mod float; +#[doc(hidden)] pub mod hidden_export { + pub use super::float::IntoFloat; // used by rand_distr +} mod integer; mod other; mod utils; @@ -238,8 +173,7 @@ mod utils; /// advantage of not needing to consider thread safety, and for most /// distributions efficient state-less sampling algorithms are available. /// -/// [`Rng`]: ../trait.Rng.html -/// [`sample_iter`]: trait.Distribution.html#method.sample_iter +/// [`sample_iter`]: Distribution::method.sample_iter pub trait Distribution<T> { /// Generate a random value of `T`, using `rng` as the source of randomness. fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T; @@ -247,33 +181,39 @@ pub trait Distribution<T> { /// Create an iterator that generates random values of `T`, using `rng` as /// the source of randomness. /// + /// Note that this function takes `self` by value. This works since + /// `Distribution<T>` is impl'd for `&D` where `D: Distribution<T>`, + /// however borrowing is not automatic hence `distr.sample_iter(...)` may + /// need to be replaced with `(&distr).sample_iter(...)` to borrow or + /// `(&*distr).sample_iter(...)` to reborrow an existing reference. + /// /// # Example /// /// ``` /// use rand::thread_rng; /// use rand::distributions::{Distribution, Alphanumeric, Uniform, Standard}; /// - /// let mut rng = thread_rng(); + /// let rng = thread_rng(); /// /// // Vec of 16 x f32: - /// let v: Vec<f32> = Standard.sample_iter(&mut rng).take(16).collect(); + /// let v: Vec<f32> = Standard.sample_iter(rng).take(16).collect(); /// /// // String: - /// let s: String = Alphanumeric.sample_iter(&mut rng).take(7).collect(); + /// let s: String = Alphanumeric.sample_iter(rng).take(7).collect(); /// /// // Dice-rolling: /// let die_range = Uniform::new_inclusive(1, 6); - /// let mut roll_die = die_range.sample_iter(&mut rng); + /// let mut roll_die = die_range.sample_iter(rng); /// while roll_die.next().unwrap() != 6 { /// println!("Not a 6; rolling again!"); /// } /// ``` - fn sample_iter<'a, R>(&'a self, rng: &'a mut R) -> DistIter<'a, Self, R, T> - where Self: Sized, R: Rng + fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> + where R: Rng, Self: Sized { DistIter { distr: self, - rng: rng, + rng, phantom: ::core::marker::PhantomData, } } @@ -292,23 +232,25 @@ impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D { /// This `struct` is created by the [`sample_iter`] method on [`Distribution`]. /// See its documentation for more. /// -/// [`Distribution`]: trait.Distribution.html -/// [`sample_iter`]: trait.Distribution.html#method.sample_iter +/// [`sample_iter`]: Distribution::sample_iter #[derive(Debug)] -pub struct DistIter<'a, D: 'a, R: 'a, T> { - distr: &'a D, - rng: &'a mut R, +pub struct DistIter<D, R, T> { + distr: D, + rng: R, phantom: ::core::marker::PhantomData<T>, } -impl<'a, D, R, T> Iterator for DistIter<'a, D, R, T> - where D: Distribution<T>, R: Rng + 'a +impl<D, R, T> Iterator for DistIter<D, R, T> + where D: Distribution<T>, R: Rng { type Item = T; #[inline(always)] fn next(&mut self) -> Option<T> { - Some(self.distr.sample(self.rng)) + // Here, self.rng may be a reference, but we must take &mut anyway. + // Even if sample could take an R: Rng by value, we would need to do this + // since Rng is not copyable and we cannot enforce that this is "reborrowable". + Some(self.distr.sample(&mut self.rng)) } fn size_hint(&self) -> (usize, Option<usize>) { @@ -316,20 +258,19 @@ impl<'a, D, R, T> Iterator for DistIter<'a, D, R, T> } } -#[cfg(rustc_1_26)] -impl<'a, D, R, T> iter::FusedIterator for DistIter<'a, D, R, T> - where D: Distribution<T>, R: Rng + 'a {} +impl<D, R, T> iter::FusedIterator for DistIter<D, R, T> + where D: Distribution<T>, R: Rng {} #[cfg(features = "nightly")] -impl<'a, D, R, T> iter::TrustedLen for DistIter<'a, D, R, T> - where D: Distribution<T>, R: Rng + 'a {} +impl<D, R, T> iter::TrustedLen for DistIter<D, R, T> + where D: Distribution<T>, R: Rng {} /// A generic random value distribution, implemented for many primitive types. /// Usually generates values with a numerically uniform distribution, and with a /// range appropriate to the type. /// -/// ## Built-in Implementations +/// ## Provided implementations /// /// Assuming the provided `Rng` is well-behaved, these implementations /// generate values with the following ranges and distributions: @@ -346,20 +287,42 @@ impl<'a, D, R, T> iter::TrustedLen for DistIter<'a, D, R, T> /// * Wrapping integers (`Wrapping<T>`), besides the type identical to their /// normal integer variants. /// -/// The following aggregate types also implement the distribution `Standard` as -/// long as their component types implement it: +/// The `Standard` distribution also supports generation of the following +/// compound types where all component types are supported: /// -/// * Tuples and arrays: Each element of the tuple or array is generated -/// independently, using the `Standard` distribution recursively. -/// * `Option<T>` where `Standard` is implemented for `T`: Returns `None` with -/// probability 0.5; otherwise generates a random `x: T` and returns `Some(x)`. +/// * Tuples (up to 12 elements): each element is generated sequentially. +/// * Arrays (up to 32 elements): each element is generated sequentially; +/// see also [`Rng::fill`] which supports arbitrary array length for integer +/// types and tends to be faster for `u32` and smaller types. +/// * `Option<T>` first generates a `bool`, and if true generates and returns +/// `Some(value)` where `value: T`, otherwise returning `None`. /// -/// # Example +/// ## Custom implementations +/// +/// The [`Standard`] distribution may be implemented for user types as follows: +/// +/// ``` +/// # #![allow(dead_code)] +/// use rand::Rng; +/// use rand::distributions::{Distribution, Standard}; +/// +/// struct MyF32 { +/// x: f32, +/// } +/// +/// impl Distribution<MyF32> for Standard { +/// fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> MyF32 { +/// MyF32 { x: rng.gen() } +/// } +/// } +/// ``` +/// +/// ## Example usage /// ``` /// use rand::prelude::*; /// use rand::distributions::Standard; /// -/// let val: f32 = SmallRng::from_entropy().sample(Standard); +/// let val: f32 = StdRng::from_entropy().sample(Standard); /// println!("f32 from [0, 1): {}", val); /// ``` /// @@ -379,243 +342,40 @@ impl<'a, D, R, T> iter::TrustedLen for DistIter<'a, D, R, T> /// faster on some architectures (on modern Intel CPUs all methods have /// approximately equal performance). /// -/// [`Open01`]: struct.Open01.html -/// [`OpenClosed01`]: struct.OpenClosed01.html -/// [`Uniform`]: uniform/struct.Uniform.html +/// [`Uniform`]: uniform::Uniform #[derive(Clone, Copy, Debug)] pub struct Standard; -/// A value with a particular weight for use with `WeightedChoice`. -#[deprecated(since="0.6.0", note="use WeightedIndex instead")] -#[allow(deprecated)] -#[derive(Copy, Clone, Debug)] -pub struct Weighted<T> { - /// The numerical weight of this item - pub weight: u32, - /// The actual item which is being weighted - pub item: T, -} - -/// A distribution that selects from a finite collection of weighted items. -/// -/// Deprecated: use [`WeightedIndex`] instead. -/// -/// [`WeightedIndex`]: struct.WeightedIndex.html -#[deprecated(since="0.6.0", note="use WeightedIndex instead")] -#[allow(deprecated)] -#[derive(Debug)] -pub struct WeightedChoice<'a, T:'a> { - items: &'a mut [Weighted<T>], - weight_range: Uniform<u32>, -} - -#[deprecated(since="0.6.0", note="use WeightedIndex instead")] -#[allow(deprecated)] -impl<'a, T: Clone> WeightedChoice<'a, T> { - /// Create a new `WeightedChoice`. - /// - /// Panics if: - /// - /// - `items` is empty - /// - the total weight is 0 - /// - the total weight is larger than a `u32` can contain. - pub fn new(items: &'a mut [Weighted<T>]) -> WeightedChoice<'a, T> { - // strictly speaking, this is subsumed by the total weight == 0 case - assert!(!items.is_empty(), "WeightedChoice::new called with no items"); - - let mut running_total: u32 = 0; - - // we convert the list from individual weights to cumulative - // weights so we can binary search. This *could* drop elements - // with weight == 0 as an optimisation. - for item in items.iter_mut() { - running_total = match running_total.checked_add(item.weight) { - Some(n) => n, - None => panic!("WeightedChoice::new called with a total weight \ - larger than a u32 can contain") - }; - - item.weight = running_total; - } - assert!(running_total != 0, "WeightedChoice::new called with a total weight of 0"); - - WeightedChoice { - items, - // we're likely to be generating numbers in this range - // relatively often, so might as well cache it - weight_range: Uniform::new(0, running_total) - } - } -} - -#[deprecated(since="0.6.0", note="use WeightedIndex instead")] -#[allow(deprecated)] -impl<'a, T: Clone> Distribution<T> for WeightedChoice<'a, T> { - fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T { - // we want to find the first element that has cumulative - // weight > sample_weight, which we do by binary since the - // cumulative weights of self.items are sorted. - - // choose a weight in [0, total_weight) - let sample_weight = self.weight_range.sample(rng); - - // short circuit when it's the first item - if sample_weight < self.items[0].weight { - return self.items[0].item.clone(); - } - - let mut idx = 0; - let mut modifier = self.items.len(); - - // now we know that every possibility has an element to the - // left, so we can just search for the last element that has - // cumulative weight <= sample_weight, then the next one will - // be "it". (Note that this greatest element will never be the - // last element of the vector, since sample_weight is chosen - // in [0, total_weight) and the cumulative weight of the last - // one is exactly the total weight.) - while modifier > 1 { - let i = idx + modifier / 2; - if self.items[i].weight <= sample_weight { - // we're small, so look to the right, but allow this - // exact element still. - idx = i; - // we need the `/ 2` to round up otherwise we'll drop - // the trailing elements when `modifier` is odd. - modifier += 1; - } else { - // otherwise we're too big, so go left. (i.e. do - // nothing) - } - modifier /= 2; - } - self.items[idx + 1].item.clone() - } -} - -#[cfg(test)] +#[cfg(all(test, feature = "std"))] mod tests { - use rngs::mock::StepRng; - #[allow(deprecated)] - use super::{WeightedChoice, Weighted, Distribution}; + use crate::Rng; + use super::{Distribution, Uniform}; #[test] - #[allow(deprecated)] - fn test_weighted_choice() { - // this makes assumptions about the internal implementation of - // WeightedChoice. It may fail when the implementation in - // `distributions::uniform::UniformInt` changes. - - macro_rules! t { - ($items:expr, $expected:expr) => {{ - let mut items = $items; - let mut total_weight = 0; - for item in &items { total_weight += item.weight; } - - let wc = WeightedChoice::new(&mut items); - let expected = $expected; - - // Use extremely large steps between the random numbers, because - // we test with small ranges and `UniformInt` is designed to prefer - // the most significant bits. - let mut rng = StepRng::new(0, !0 / (total_weight as u64)); - - for &val in expected.iter() { - assert_eq!(wc.sample(&mut rng), val) - } - }} - } - - t!([Weighted { weight: 1, item: 10}], [10]); - - // skip some - t!([Weighted { weight: 0, item: 20}, - Weighted { weight: 2, item: 21}, - Weighted { weight: 0, item: 22}, - Weighted { weight: 1, item: 23}], - [21, 21, 23]); - - // different weights - t!([Weighted { weight: 4, item: 30}, - Weighted { weight: 3, item: 31}], - [30, 31, 30, 31, 30, 31, 30]); - - // check that we're binary searching - // correctly with some vectors of odd - // length. - t!([Weighted { weight: 1, item: 40}, - Weighted { weight: 1, item: 41}, - Weighted { weight: 1, item: 42}, - Weighted { weight: 1, item: 43}, - Weighted { weight: 1, item: 44}], - [40, 41, 42, 43, 44]); - t!([Weighted { weight: 1, item: 50}, - Weighted { weight: 1, item: 51}, - Weighted { weight: 1, item: 52}, - Weighted { weight: 1, item: 53}, - Weighted { weight: 1, item: 54}, - Weighted { weight: 1, item: 55}, - Weighted { weight: 1, item: 56}], - [50, 54, 51, 55, 52, 56, 53]); - } - - #[test] - #[allow(deprecated)] - fn test_weighted_clone_initialization() { - let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; - let clone = initial.clone(); - assert_eq!(initial.weight, clone.weight); - assert_eq!(initial.item, clone.item); - } - - #[test] #[should_panic] - #[allow(deprecated)] - fn test_weighted_clone_change_weight() { - let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; - let mut clone = initial.clone(); - clone.weight = 5; - assert_eq!(initial.weight, clone.weight); - } - - #[test] #[should_panic] - #[allow(deprecated)] - fn test_weighted_clone_change_item() { - let initial : Weighted<u32> = Weighted {weight: 1, item: 1}; - let mut clone = initial.clone(); - clone.item = 5; - assert_eq!(initial.item, clone.item); - - } - - #[test] #[should_panic] - #[allow(deprecated)] - fn test_weighted_choice_no_items() { - WeightedChoice::<isize>::new(&mut []); - } - #[test] #[should_panic] - #[allow(deprecated)] - fn test_weighted_choice_zero_weight() { - WeightedChoice::new(&mut [Weighted { weight: 0, item: 0}, - Weighted { weight: 0, item: 1}]); - } - #[test] #[should_panic] - #[allow(deprecated)] - fn test_weighted_choice_weight_overflows() { - let x = ::core::u32::MAX / 2; // x + x + 2 is the overflow - WeightedChoice::new(&mut [Weighted { weight: x, item: 0 }, - Weighted { weight: 1, item: 1 }, - Weighted { weight: x, item: 2 }, - Weighted { weight: 1, item: 3 }]); - } - - #[cfg(feature="std")] - #[test] fn test_distributions_iter() { - use distributions::Normal; - let mut rng = ::test::rng(210); - let distr = Normal::new(10.0, 10.0); - let results: Vec<_> = distr.sample_iter(&mut rng).take(100).collect(); + use crate::distributions::Open01; + let mut rng = crate::test::rng(210); + let distr = Open01; + let results: Vec<f32> = distr.sample_iter(&mut rng).take(100).collect(); println!("{:?}", results); } + + #[test] + fn test_make_an_iter() { + fn ten_dice_rolls_other_than_five<'a, R: Rng>(rng: &'a mut R) -> impl Iterator<Item = i32> + 'a { + Uniform::new_inclusive(1, 6) + .sample_iter(rng) + .filter(|x| *x != 5) + .take(10) + } + + let mut rng = crate::test::rng(211); + let mut count = 0; + for val in ten_dice_rolls_other_than_five(&mut rng) { + assert!(val >= 1 && val <= 6 && val != 5); + count += 1; + } + assert_eq!(count, 10); + } } |